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Abstract

Starting from J. B. Long & Plosser (1983), multi-sector DSGE models have challenged the
notion of aggregate technology shocks as the main driver of business cycle fluctuations, and
provided a strong evidential basis for the relevance of independent sectoral shocks amplified
by asymmetric production networks. More recently, with Comin & Gertler (2006) short-run
conceptions of the business cycle were challenged, and medium-run cycles are modelled in
terms of endogenous technology mechanisms. This dissertation presents a pioneering attempt
to reach a synthesis between these different strands of literature. It introduces a multi-sector
RBC economy in which each sector independently makes decisions to invest in R&D and adopt
new technologies. Sectors interact with each other in a productive network via intermediate
inputs, but are also affected by R&D and technology adoption spillovers transmitted from
upstream or downstream sectors in the value chain. Evidence is provided that this model is
capable of accounting for extended observed aggregate and sectoral fluctuations.
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1 Introduction
This master thesis proposes, builds and simulates of a new form of macroeconomic Dynamic
Stochastic General Equilibrium (DSGE) model which provides a rich and disaggregated account
of production in a multi-sector Real Business Cycle (RBC) economy. In contrast to other multi-
sector models describing input-output interactions in the economy such as J. B. Long & Plosser
(1983), Horvath (2000) or Atalay (2017), sectors in this model comprise not only of monopolisti-
cally competitive firms employing labor, capital and intermediate inputs in production, but also
of a set of technology adopters and technology innovators. Adopters and innovators each employ
skilled labor to adopt new technologies (i.e. convert an idea or technology into a production plan)
and invent new technologies, respectively. With a fully decentralized production and innovation
system in place in each sector, sectoral interactions in this model occur in terms of value chains in
intermediate inputs, but also in the form of sectoral spillovers in technology adoption and R&D.

The intentions behind this model are several. First, to provide a richer account of modern
production processes and study technology diffusion and R&D spillovers through the input-output
network. Secondly a model that is able to describe short-and medium-term fluctuations in ag-
gregate and sectoral outputs and productivities without excessive reliance on nominal frictions1
or exogenous technology, as is the predominant approach in the New-Keynesian DSGE literature.
Thirdly, the model cuts a bridge between two active but rather distinct literatures in macroe-
conomics: the literature on sectoral shocks and aggregate fluctuations with key contributions by
J. B. Long & Plosser (1983), Horvath (1998, 2000), Petrella & Santoro (2011), Acemoglu et al.
(2012, 2016), Bouakez et al. (2014), Stella (2015), and Atalay (2017) amongst others, and the
literature on medium-run fluctuations and the integration of growth and business cycles with key
contributions by Comin & Gertler (2006), Comin (2009), Bianchi et al. (2018) and Anzoategui
et al. (2017). The former literature attempts to model the multi-sector economy in intermediate
productive inputs and has focussed on the question to what degree independent and uncorrelated
sectoral shocks can generate, or are responsible for, aggregate business cycle volatility. Most of
the models constructed in this literature are simple Real Business Cycle (RBC) models that are
carefully calibrated for 20-40 sectors in the US economy (2-digit Standard Industrial Code (ISIC)
level). The results from this literature show a remarkable success in generating aggregate US
volatility from such a set-up without any nominal frictions - in stark contrast to the dominant
New-Keynesian approach that has relied on many such frictions to generate volatility in aggregate
data. The multi-sector literature has also determined under which conditions independent and
uncorrelated sectoral shocks can generate aggregate volatility. The second literature focuses on
modelling and explaining the "medium-run cycle" - a concept first introduced by Comin & Gertler
(2006) to denote the combination of high and medium-frequency components of (US) output and
productivity that fluctuate around a very smooth non-linear trend at frequencies of up to 200
quarters. The degree of aggregate volatility studied is thus much greater and much longer than
that captured in the traditional business cycle, defined by the frequencies up to 32 quarters. The
claim of Djego Comin and his co-authors, established through their models and supporting em-
pirical evidence, is that this medium-run cycle constitutes neither fluctuations in long-run growth
nor a completely separate phenomenon. Rather it interacts with, and is driven by, the classical
business cycle. According to Comin this interaction takes place in the form of pro-cyclical deci-
sion by firms and other economic agents to invest in R&D and adopt new technologies, which let
the business cycle have medium-run effects. Strategic decisions become the driving force behind
the medium-run cycle. The models developed by these authors to explain the medium-run cycle,
culminating in Anzoategui et al. (2017), are essentially New-Keynesian business cycle models with
many frictions which include an extended endogenous R&D and technology adoption mechanism.

Considering the results of these two literatures in macroeconomics, it is evident what the con-
tribution of the model I develop in this dissertation is: If the business cycle can be explained to
a significant degree by sectoral interactions, and if business cycle decisions to invest in R&D and
technology adoption translate into medium-run fluctuations in output and productivity that far
outlive the business cycle, then these decisions should also be explicable to a good extent in a
framework of sectoral interactions. In other words, sectoral interactions might be a major driv-

1Sectoral frictions in prices, wages and investment adjustment costs may still be added to provide additional
realism, but are not implemented in the baseline model exhibited in this dissertation.
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ing force behind both business and medium-run cycles. To investigate this possibility I create a
multi-sector RBC model that includes imperfect competition and a pro-cyclical and fully endoge-
nous production and innovation system in each sector - modelled after Anzoategui et al. (2017).
I then introduce several mechanisms by which sectoral interactions could give rise to aggregate
medium-run fluctuations. The first and most intuitive of these mechanisms operates by linking all
productive sectors through intermediate input (and demand) linkages, thereby allowing indepen-
dent sectoral shocks to transmit through the input-output network while generating pro-cyclical
responses in terms of R&D and technology adoption decisions in different sectors. The second
mechanism works via strategic complementarities in technology adoption inside productive value
chains: If downstream sectors adopt a new technology that allows them to produce greater vol-
umes more efficiently and more profitable, they will require greater volumes of intermediate inputs
from upstream suppliers. This will induce the upstream sectors to also increase their productive
efficiency by adopting new technologies. Likewise upstream sectors could adopt a new technol-
ogy enabling them to supply greater volumes of intermediate inputs more cheaply. With some
competitive pressure in downstream sectors, this will depress the price of downstream products
and increase demand - requiring also downstream sectors to adopt new technologies and produce
greater volumes. A third possibility, albeit a theoretically more ambiguous one, are spillovers in
the productivity of R&D across different sectors. It is conceivable for example that a technological
breakthrough in optics or nano-technology leads, with little delay, to a similar breakthrough in
consumer-electronics - a more rapid phase of new products being invented and making it to the
market. Likewise a breakthrough in consumer electronics - for example in electric cars, could in-
crease R&D in some upstream sectors i.e. firms working on batteries. In allowing for these adoption
and R&D spillovers, my aim is also to impose as little restrictions as possible on the kind of sec-
toral interactions allowed to take place - preferably letting the data speak in an estimation exercise.

These things being said, I have unfortunately to this point not been able to fulfil the aim of
my research: in the following I will construct, solve and succesfully simulate a model of the kind
just outlined, but due to limitations in the amount of time and the quality of data available to
me, I have not yet been able to evaluate the model or study its precise properties in an estima-
tion exercise. This failure to truly evaluate the model is largely due to the long time needed to
construct the model itself and problems encountered thereby, some of which still demand a more
satisfactory solution than presently implemented. Below I therefore spend some time laying out in
detail the construction of the model in a way that does justice to its complexity. I will do this in
two steps: First, I construct a multi-sector RBC model and study its properties in a simulation.
Then I will present a simple RBC model of endogenous technology, where I will implement the full
endogenous R&D and technology diffusion mechanism devised by Anzoategui et al. (2017), but in
a much simpler model than Anzoategui et al. (2017), and also study its properties by means of
a simulation. Having thus studied the two key ingredients - sectoral interaction in intermediate
inputs and endogenous R&D and technology adoption in a single sector - I will construct the full
model by integrating these two models into one-another. The properties of the full model will also
be studied by means of simulations. Finally I calibrate both the multi-sector RBC and the full
model to the 3-sector US economy in agriculture, industry and services, followed by an extended
calibration of the multi-sector RBC to the 10-sector US economy. The calibration results are then
compared with the results from a Structural VAR (SVAR). The purpose of this final calibration
exercise is to establish that the model is, at least in theory, capable of fitting the data - a task that
is to be taken further in a careful estimation of the model by Bayesian methods.

The remainder of this document is structured as follows: section 2 very briefly reviews the
literatures on sectoral shocks and aggregate fluctuations and on medium-run fluctuations and
endogenous-technology DSGE models. Section 3 introduces and simulates the basic multi-sector
RBC model and section 4 introduces and simulates the basic RBC model with endogenous R&D
and technology diffusion. Section 5 then integrates the two models to yield the model advocated
above and provides simulation results for a basic 2-sector set-up. Section 6 contains the calibration
exercise to the 3- and 10-sector US economy. Section 7 concludes.
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2 Literature Review
The literature on multi-sector DSGE models is long and dates back principally to J. B. Long &
Plosser (1983). While multi-sector and multi-region DSGE models are becoming more frequent
in recent macroeconomic analysis as a means to allow for sectoral interactions and heterogenous
effects of policy, not all papers address, implicitly or explicitly, the objective set by J. B. Long
& Plosser (1983) and following papers, which is to study how aggregate fluctuations can be the
result of sectoral shocks in an economy where productive sectors are linked through input-output
interactions. It is this more-limited multi-sector DSGE literature that I will briefly review in
the following subsection. Likewise many models feature some form of endogenous technology
mechanism, but only a handful of papers study how decisions to invent and adopt new technologies,
informed by economic considerations of decentralized agents, translate into aggregate R&D and
technology diffusion and dynamics in aggregate economic variables.

2.1 Sectoral Shocks and Aggregate Fluctuations
In their landmark contribution, J. B. Long & Plosser (1983) showed, using a simple social-planner
RBC setup without frictions, government or money, how independent and serially uncorrelated
shocks, via their impact on consumer preferences, smoothing and love for variety, can translate
into persistence and co-movement of sectoral outputs, and the persistence of aggregate output. In
their calibration to the 6-sector US economy, they also establish a disproportionate share in aggre-
gate volatility of shocks to sectors with many productive uses, such as manufacturing and transport
services. Overall they were among the first to show that business cycle phenomena were consistent
with the principles of economic efficiency. J. B. Long & Plosser (1983) concluded that their model
provides a good benchmark to gauge the importance of nominal frictions and other factors believed
to drive business cycles. As an empirical companion to J. B. Long & Plosser (1983), B. J. B. Long
& Plosser (1987) empirically investigate the monthly output series of 13 US sectors and. By per-
forming factor analysis on the innovations from a seasonal VAR, they decompose the series into
an aggregate and sectoral components. They find that a factor model with up to two aggregate
factors accounts for at most 26% of the sectoral variation, and at most 47% of the variation on ag-
gregate economy output, indicating that independent sectoral shocks and propagating mechanisms
as introduced in J. B. Long & Plosser (1983) might be relevant in explaining aggregate US volatility.

The next seminal works are the papers by Horvath (1998) and Horvath (2000), intermediated
by Dupor (1999). In a nutshell, Horvath (1998) calibrates a multi-sector RBC model of the US
economy similar to J. B. Long & Plosser (1983), and establishes that sectoral shocks matter most
of there are many sparse rows in the input-use matrix, that is if some sectors supply more inputs to
more sectors than others. He shows that the 2-digit US input-use matrix is indeed sparse, and that
independent sectoral shocks could account for as much as 80% of aggregate US volatility. Dupor
(1999) critiques this results with a classical argument that, as the economy becomes more disag-
gregated, independent sectoral shocks shocks should cancel each other out and aggregate volatility
from sectoral shocks should decline with the law of large numbers - that is at the rate of

√
n, where

n is the number of sectors. In response, Horvath (2000), using a calibrated 36-sector RBC model
of US economy, shows that limited interaction, characterized by a sparse input-output matrix,
reduces the substitution possibilities among intermediate inputs and strengthens the co-movement
in sectoral value-added (VA). This sparsity effect then leads to a postponement of the law of large
numbers in bringing down the variance of aggregate value-added, which was thought by Dupor
(1999) and others to thwart a determining influence if idiosyncratic sectoral shocks to aggregate
fluctuations. Horvath (2000) further shows that aggregate shocks of the required magnitude and
persistence are hard to observe in the data, and that his model is able to generate realistic US
business cycles without relying on such aggregate shocks, while at the same time capable of pro-
viding more precise policy prescriptions.

After Horvath (2000) and the sparsity result, a further key contribution was brought in by
Acemoglu et al. (2012), who theoretically showed that in the presence of inter-sectoral input-output
linkages, microeconomic idiosyncratic shocks may lead to aggregate fluctuations, but that the rate
at which aggregate volatility decays is determined by the structure of the network capturing such
linkages, and not the sparsity of the input-output matrix as such. They find that sizeable aggregate
volatility is obtained from sectoral shocks only if there exists significant asymmetries in the roles
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sectors play as suppliers to others. The sparseness of the input-output matrix is thereby unrelated
to the nature of aggregate fluctuation. They support the mathematical results in their paper with
some nice illustrations, some if which I reproduce below in Figure (1).

Figure 1: Model Network Structures and the US 3-digit Network Structure

Figures taken from Acemoglu et al. (2012)

The results of Acemoglu et al. (2012) answer the debate among Dupor (1999) and Horvath
(2000) by establishing that sectoral shocks cancel out in the aggregate in economies where sectors
are either self-contained or equally important as suppliers of input. This is shown in the first two
network structures in Figure (1). Such shocks however propagate through the entire economy in
productive networks with a few key suppliers, as shown in the third network structure in Figure
(1). Below the 3 networks, Figure (1) show the US 3-digit production network. It most closely
resembles the third structure, with some sectors figuring significantly more important as suppliers
of inputs than others.

As a recent concerted effort, Atalay (2017) quantifies the contribution of sectoral shocks to
business cycle fluctuations in aggregate US output, using data on U.S. industries input prices and
input choices. His approach is a bit more rigorous than Horvath (2000): he also estimates the sec-
toral elasticities of substitution, and derives a model-filter from the state-space representation of
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his DSGE model which he then applies to the data in order to filter out the volatility attributable
to sectoral shocks. He shows that goods produced by different industries are mainly complements
to one another as inputs in downstream industries production functions. These complementarities
indicate that industry-specific shocks are substantially more important than previously thought,
accounting for at least half of aggregate volatility (Atalay (2017)’s estimate is up to 80% of aggre-
gate US volatility).

2.2 Medium-Run Fluctuations and Endogenous Technology
Whereas long-run growth and business cycles have traditionally, and continue to be, studied as
separate phenomena with dominions cleanly separated by the Hodrik-Prescott (HP) filter, it the
seminal work of Comin & Gertler (2006) that introduced the profession to the idea of the medium-
run cycle. In their paper, Comin & Gertler (2006) use a high-pass filter to separate out fluctuations
below 200 quarters (which amounts to subtracting a very smooth non-linear trend) in US output,
and characterize the remaining variation as a "medium-run cycle". They proceed to show that this
cycle is substantially more volatile and persistent than conventional business-cycle measures, and
features significant pro-cyclical movements in embodied and disembodied technological change,
R&D, and in the efficiency and intensity of resource utilization. Comin & Gertler (2006) then
present a NK-DSGE model of the medium-run cycle which incorporates decentralized endogenous
R&D and technology diffusion as well as resource under-utilization, and thus fully endogenizes the
movements in productivity that appear central to the persistence of these medium-run fluctuations.
The medium-run cycle of Comin & Gertler (2006) is shown in Figure (2). The fluctuations around
the medium-term component constitute the HP-business cycle traditionally studied.

Figure 2: Medium-Run Cycle in US Nonfarm Business Output per Person

Figure taken from Comin & Gertler (2006)

Building on the work of Comin & Gertler (2006), Comin (2009) presents some empirical evidence
in R&D, technology diffusion and productivity patterns affirming the relevance of macro models
where endogenous technological change mechanisms are responsible both for long-run growth and
the propagation of low-persistence shocks. The paper also presents a simple model of endogenous
technological change and diffusion that is consistent with this evidence and easier to handle than
the model of Comin & Gertler (2006). Also building on Comin & Gertler (2006), Anzoategui et al.
(2017) present an even more advanced endogenous R&D and technology adoption model incorpo-
rating several types of nominal frictions. Anzoategui et al. (2017) use this model to examine the
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hypothesis that the slowdown in productivity following the Great Recession2 was to a significant
extent an endogenous response to the contraction in demand that induced the downturn. They
begin by presenting panel data evidence that technology diffusion is highly cyclical, and calibrate
the model with the endogenous TFP mechanism to the US economy. They show that the model’s
implied cyclicality of technology diffusion is consistent with the panel data evidence. Afterwards
they use the model to assess the sources of the productivity slowdown, and show that a significant
part of the fall in productivity following the Great Recession after the 2008 financial crisis was
endogenous.

In light of these efforts in the literature, the model introduced in this dissertation appears very
relevant and capable of generating further insights into the drivers of the medium-run cycle. It
is to my knowledge the first model of this kind, integrating endogenous technology creation and
adoption into a multi-sector DSGE framework.

3 A Simple Multi-Sector RBC Model
Consider a simple multi-sector RBC economy comprised of N sectors, referenced by i. In this
economy, aggregate consumption is a CES aggregate of consumption goods produced by N sectors,
and households supply differentiated labor to the different sectors

ct =

[
N∑
i=1

ω
1
ε
i c

ε−1
ε

it

] ε
ε−1

, lt =

[
N∑
i=1

ς
1
ν
i l

ν−1
ν

it

] ν
ν−1

, (1)

where ωi are time-invariant shares of each sectors goods in the consumers preferences, ςi are
shares determining the allocation of labor to the different sectors, and ε and ν are elasticities of
substitution of the different sectors in the consumers consumption preferences and labor supply.
The corresponding consumer price index (CPI) and aggregate wage index are given by

pt =

[
N∑
i=1

ωip
1−ε
it

] 1
1−ε

, wt =

[
N∑
i=1

ςiw
1−ν
it

] 1
1−ν

. (2)

3.1 Households
I in the following represent all households by a representative household that maximizes his or her
present discounted lifetime utility w.r.t. consumption and labor supply. This households present
discounted lifetime utility is given by

Et

∞∑
t=0

βt

[
c1−σt

1− σ
− l1+ϕt

1 + ϕ

]
, (3)

with β the inter-temporal discount factor, σ the relative risk aversion coefficient, and ϕ the marginal
disutility from labor supply. Households also invest in an aggregate investment good that firms use
to replenish their capital stocks. The price index in Eq. (2) denotes the cost of capital investment
in each sector. Since little is known about depreciation rates in different sectors, I will assume
an equal depreciation rate δ across all sectors, and perfect capital mobility equalizes the rental
rate of capital rt in all sectors. Assuming that the representative household own the firms, he
maximize this utility function subject to an inter-temporal budget constraint. In a model without
borrowing, his resource constraint stipulates that consumption and investment in each period need
to be financed by wage-income, capital income and dividends

N∑
i=1

(pitcit + ptiit − witlit − rtptkit − πit) = 0. (4)

The law of motion for the aggregate capital stock is given by

kt+1 = (1− δ)kt + it. (5)
2The economic downturn following the 2008/2009 global financial crisis.
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Capital, investment and firm profits have simple linear aggregators

kt =

N∑
i=1

kit, it =

N∑
i=1

iit, πt =

N∑
i=1

πit. (6)

Now following Herrendorf et al. (2014), since only the choice of investment involves inter-temporal
dynamics, the optimization problem laid down above can be broken down into one inter-temporal
choice problem and 2 allocation problems. Starting with the latter, taking the aggregate consump-
tion quantity as given, the representative household chooses cit subject to a resource constraint∑N
i=1 pitcit = ptct. Simiarly, workers maximize their wage income

∑N
i=1 witlit subject to the CES

aggregator. The outcome of these problems is described in Dixit & Stiglitz (1977) and gives a
simple set of equations describing optimal consumption, and labor allocation3

cit = ctωi

(
pit
pt

)−ε
; lit = ltςi

(
wit
wt

)ν
. (7)

Using the aggregators and wage/price indices, the budget constraint in Eq. (4) can be aggregated

pt(ct + it) = wtlt + rtptkt + πt. (8)

Substituting the capital accumulation rule into the budget constraint for it yields

ptct + ptkt+1 − pt(1− δ)kt = wtlt + rtptkt + πt. (9)

The representative household then maximizes Eq. (3) subject to this budget constraint. The first-
order conditions (FOC’s) for consumption and capital yield the Euler- and labor supply equations

c−σt = βEt
[
c−σt+1 (1− δ + rt+1)

]
, (10)

lϕt =
wt
cσt pt

. (11)

The Euler equation describes the representative households optimal inter-temporal consumption
choice by equating the marginal utility (MU) of consumption today to the discounted MU of
consumption tomorrow. The labor supply equation provides the optimal intra-temporal choice
between consumption and labor by equating the relative allocation of consumption and labor to
the real wage (wt/pt).

3.2 Firms
On the production side each sector i has a representative firm with a standard Copp-Douglas
production function of the form

yit = aitk
αi
it l

βi
itM

1−αi−βi
it ∀ i, (12)

with intermediate input composite

Mit =

 N∑
j=1

γ
1
ηi
ji m

ηi−1

ηi
jit


ηi
ηi−1

∀ i. (13)

The notation followed throughout this document is that mji = morigin→destiny denotes the inter-
mediate input quantity supplied by sector j to sector i. The shares γji correspond to the input
shares of each sector, as obtained from a column-normalized input-output (IO) matrix, with ηi
the sector-specific elasticity of substitution between the different intermediate inputs. Each sector
further has an exogenous technology process of the form

log ait = (1− ρi) log a∗i + ρi log ai,t−1 + uit + vt ∀ i, (14)
3I note that the specification of ν instead of −ν in the optimal allocation of labor was made as an ad-hoc adjust-

ment, since the problem in itself would minimize labor income just as consumption expenditure is minimized. This
adjustment was considered necessary since using leisure instead of labor dramatically complicates the optimization
problem, and moving beyond a CES structure for labor in a simple model like this was deemed inconvenient.
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with uit a sector-specific technology shock and vt an aggregate technology shock applying equally
to all sectors. In each period the representative firm in each sector chooses capital, labor and the
quantity of each intermediate input to buy in order to maximize profits

max
lit,kit,mjit

πit = pitaitk
αi
it l

βi
it

 N∑
j=1

γ
1
ηi
ji m

ηi−1

ηi
jit


ηi(1−αi−βi)

ηi−1

−witlit − rtptkit −
N∑
j=1

pjtmjit ∀ i. (15)

It would be possible to take into account the consumers demand curve facing each sector given by
Eq. (7) to determine the monopoly price in each period, but for now I will assume that each sector
is actually populated by a continuum measure unity of perfectly competitive firms which take the
sectoral price of output and the sectoral wage as given, thus the representative firm acts as if it
had an infinitely small share of the sectoral output. The FOC’s are

∂πit
∂kit

⇒ rtpt
pit

= αi
yit
kit

∀ i (16)

∂πit
∂lit

⇒ wit
pit

= βi
yit
lit

∀ i (17)

∂πit
∂mjit

⇒ mjit =

(
pit
pjt

)ηi
(1− αi − βi)ηiγjiyηiitM

1−ηi
it ∀ i ∀ j. (18)

There are N2 of Eq. (18), one per intermediate input for each sector. Now one needs to find the
price of output in each sector, pit. In perfect competition P = MC, so we need to find the MC of
each sector. The total cost is given by4

TCit = witlit + rtptkit +

N∑
j=1

pjtmjit = pityit ∀ i. (19)

Inserting Eq. (18) into Eq. (13) yields, after some manipulation

Mit = pit(1− αi − βi)yit

 N∑
j=1

γjip
1−ηi
jt


−1

1−ηi

︸ ︷︷ ︸
1/pMit

pMit

pit
= (1− αi − βi)

yit
Mit

.

(20)

rewriting Eq. (19) as
TCit = pitaitk

αi
it l

βi
itM

1−αi−βi
it ∀ i, (21)

and inserting Equations (16), (17) and (20) into it gives

TCit = pitait

(
αi
yitpit
rtpt

)αi (
βi
yitpit
wit

)βi (
(1− αi − βi)

yitpit
pMit

)1−αi−βi
∀ i,

= yitp
2
itait

(
αi
rtpt

)αi ( βi
wit

)βi (1− αi − βi
pMit

)1−αi−βi
∀ i.

(22)

Now setting pit = MCit = ∂TCit
∂yit

gives the ideal sectoral price of output in terms of each sectors
technology and production parameters, the sectoral wage, and (as captured by the price-index for
intermediate inputs pMit) the prices of output of all other sectors, weighted by their shares in
sector i’s production and the elasticity of substitution

pit =
1

ait

(
rtpt
αi

)αi (wit
βi

)βi ( pMit

1− αi − βi

)1−αi−βi
∀ i. (23)

Attentive readers will notice that Eq. (23) describes a system of N equations in 2N unknowns, wi
and pi, which will provide some difficulty to solve later on. The model is closed by an equilibrium

4The second equality follows from the assumption of perfect competition i.e. no profits.

10



condition for each sector of the form

yit = cit + iit +

N∑
j=1

mijt ∀ i. (24)

The following Table (1) summarizes the equations of the model.

Table 1: Simple N-Sector RBC Model

Equation Definition

c−σt = βEt
[
c−σt+1 (1− δ + rt+1)

]
Euler Equation

lϕt = wt
cσt pt

labor Supply

cit = ctωi

(
pit
pt

)−ε
∀ i Optimal Consumption Choice

lit = ltςi

(
wit
wt

)ν
∀ i Optimal labor Allocation

kt+1 = (1− δ)kt + it Capital Law of Motion
yit = aitk

αi
it l

βi
itM

1−αi−βi
it ∀ i Production Function Sector i

Mit =

[∑N
j=1 γ

1
ηi
ji m

ηi−1

ηi
jit

] ηi
ηi−1

∀ i Intermediate Inputs Sector i

kit = αi
yitpit
rtpt

∀ i Demand for Capital Sector i
lit = βi

yitpit
wit

∀ i Demand for labor Sector i

mjit =
(
pit
pjt

)ηi
(1− αi − βi)ηiγjiyηiitM

1−ηi
it ∀ i ∀ j Demand for sector j, Sector i

pt =
[∑N

i=1 ωip
1−ε
it

] 1
1−ε

Ideal Price Index

wt =
[∑N

i=1 ςiw
1−ν
it

] 1
1−ν

Average Wage

pMit =
[∑N

j=1 γjip
1−ηi
jt

] 1
1−ηi ∀ i Price of Intermediates Sector i

pit = 1
ait

(
rtpt
αi

)αi (
wit
βi

)βi (
pMit

1−αi−βi

)1−αi−βi
∀ i Optimal Price Sector i

yit = cit + iit +
∑N
j=1mijt ∀ i Equilibrium Condition Sector i

log ait = (1− ρi) log a∗i + ρi log ai,t−1 + uit + vt ∀ i Technology Shock Sector i
kt =

∑N
i=1 kit Capital Aggregation

it =
∑N
i=1 iit Investment Aggregation

yt =
∑N
i=1 yit Output Aggregation (Optional)

3.3 Steady State Solution
The steady state of the model is obtained by assuming that all variables in the model do not vary
over time, and then solving the models equations for the values that all variables must take for
this to be the case. I denote steady-state values by superscripting them with a ∗ (xit → x∗i ). In
computing the steady state I follow the widespread convention of setting a∗i = 1 ∀ i. The Euler
Equation gives

r∗ =
1

β
− (1− δ). (25)

The next step is to determine the prices and wages. Since all prices and wages are related, and, in
a perfectly competitive equilibrium, obey Walras Law, I will apply a normalization by setting the
average wage w∗ = 1. With this normalization, the average wage index can be written as

1 =

N∑
i=1

ςiw
∗1−ν
i ⇒ w∗i =

 1

ςi
−
∑
j 6=i

ςj
ςi
w∗1−νj

 1
1−ν

∀ i. (26)

From the optimal sectoral prices, I yield

w∗i = βi(p
∗
i a
∗
i )

1
βi

(
r∗p∗

αi

)−αiβi ( p∗Mi

1− αi − βi

)αi+βi−1

βi

∀ i. (27)
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The pricing problem can now be solved numerically, either by taking Eq. (26) and Eq. (27) and
solving a system of 2N equations with 2N unknowns (w∗i and p∗i ), or by plugging Eq. (26) into
Eq. (27), and Eq. (27) into the optimal sectoral price equation (23), and then solving a system of
N equations in p∗i , before using Eq. (27) to get the wages. With prices and wages determined, the
next step is to solve the system of equilibrium conditions to get the outputs y∗i . From the capital
law of motion (which can be disaggregated) and the demand for capital

i∗i = δk∗i = δαi
p∗i
r∗p∗

y∗i ∀ i. (28)

Combining the optimal consumption choice with the labor supply equation and the optimal labor
allocation yields

c∗i =

(
w∗

lϕp∗

) 1
σ

ωi

(
p∗i
p∗

)−ε
=

(
w∗

p∗

) 1
σ

ωi

(
p∗i
p∗

)−ε(
l∗i
ςi

)−ϕσ (w∗i
w∗

) νϕ
σ

∀ i. (29)

Now inserting also the demand for labor gives

c∗i =

(
w∗

p∗

) 1
σ

ωi

(
p∗i
p∗

)−ε(
βi
ςi

p∗i
w∗i

)−ϕσ (w∗i
w∗

) νϕ
σ

y
∗−ϕσ
i ∀ i. (30)

The FOC’s for the intermediate goods supplied by sector i to other sectors are

m∗ij =

(
p∗j
p∗i

)ηj
(1− αj − βj)ηjγijy

∗ηj
j M

∗1−ηj
j ∀ i ∀ j. (31)

These FOC’s need to be re-expressed in terms of outputs and prices and then plugged into the
equilibrium conditions. Dividing two of the mij yields

m∗kj
m∗ij

=
γkj
γij

(
p∗i
p∗k

)ηj
⇒ m∗kj =

γkj
γij

(
p∗i
p∗k

)ηj
m∗ij ∀ k ∀ i ∀ j, (32)

and plugging Eq. (32) into the intermediate goods composite yields

M∗j =

[
N∑
k=1

γkjγ

1−ηj
ηj

ij

(
p∗i
p∗k

)ηj−1] ηj
ηj−1

m∗ij ∀ i ∀ j. (33)

Now plugging this back into Eq. (31) yields

m∗ij =
pjt
pit

(1− αj − βj)γ
1
ηj

ij

[
N∑
k=1

γkjγ

1−ηj
ηj

ij

(
p∗i
p∗k

)ηj−1]−1
yjt ∀ i ∀ j. (34)

Plugging Equations (28), (30) and (34) into the equilibrium conditions (24) gives a system of N
equations in the sectoral outputs y∗i , which also needs to be solved numerically. With outputs,
wages and prices determined, all other steady-state values in the model are easily determined.

3.4 Simulation
With the steady-state determined, I let dynare compute a 1st-order Taylor expansion of the model
around the steady-state, and then perform a stochastic simulation over 2000 periods (200 periods
burn-in) of a stylized symmetric 2-sector version of the model. The parameters used in this
simulation are largely taken from Costa (2016) and shown in Table (2).
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Table 2: Symmetric 2-Sector Parameterization

Parameter Value Parameter Value

σ 2 ϕ 1.5
β 0.985 δ 0.025
ε 0.8 ν 0.8
η1 0.8 η2 0.8
ω1 0.5 ω2 0.5
ς1 0.5 ς2 0.5
α2 0.35 α2 0.35
β1 0.3 β2 0.3
γ11 0.5 γ21 0.5
γ12 0.5 γ22 0.5
ρ1 0.95 ρ2 0.95

Figure (3) below shows the Impulse Response Functions (IRF’s) obtained from a 0.1 standard-
deviation productivity shock to sector 1. It is evident that the shock causes output to increase
equally in the two sectors5. Consumption also increases in both sectors, but is initially a lot higher
in sector 1 (initially relative consumption shifts to sector 1). The shock initially decreases the
capital stock in sector 1, but higher investment replenishes and increases it after 10 periods leading
to an increased use of capital in both sectors for an extended period of time. The behavior of
capital is mirrored by labor. The shock to productivity decreases the use of labor in sector 1, and
initially increases employment in sector 2, but after a while the use of labor in both sectors is
below it initial value - production has become more capital intensive. The movements in capital
and labor use are matched by the change in the rental rate of capital, which initially spikes by the
initial demand for capital coming triggered by the shock, but then decreases and remains below its
initial value for an extended period of time as the aggregate capital stock grows. Simultaneously,
the wage rate in both sectors increases and remains higher for a long time.

5This is only the case by virtue of the symmetric parameterization. When the model is calibrated in section 6,
the responses of sectoral outputs to a shock in one sector are more heterogenous.
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Figure 3: Impulse Response Functions Following 0.1 sd Shock to Sector 1
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The use of intermediate inputs in production increases in both sectors following the shock, but
more in sector 2 than in sector 1. At the disaggregated level, we can see that sector 1 supplies
substantially more inputs to itself and sector 2, while sector 2 initially supplies less inputs to sector
1 and more to itself. This movement in inputs is triggered by a movement in relative prices as the
price of sector 1 initially decreases following the shock and the price of sector 2 increases.

Having thus introduced the basic multi-sector RBC model and studied its mechanics at a basic
level, I proceed to introduce a simple one-sector RBC model in which the production process is
now augmented to allow for endogenous technology creation and adoption. Since technology is
only privately created if there are profits, there now needs to be imperfect competition.

4 A Simple RBC Model with Endogenous R&D and Tech-
nology Diffusion

The model of production introduced in this section is adapted from Comin (2009) and Anzoategui
et al. (2017) and involves a fully decentralized production and innovation process involving 4 agents:
Perfectly competitive final goods (retail) firms, monopolistically competitive intermediate goods
(wholesale) firms, technology adopters and technology innovators. The latter two also reap the
benefits of imperfect competition in the wholesale sector by selling production plans and ideas,
respectively. The benefits to the consumer from technology creation and adoption will be in terms
of expanding variety, which will manifest itself in an expansion of the number of wholesale firms,

14



each producing a single differentiated product. A distinction between technology creation and
adoption is made to allow for realistic lags in the adoption process. The optimization problems of
these 4 types of agents are described in turn.

4.1 Final Good (Retail) Firms
As in the textbook NK model, the final goods firm is perfectly competitive and aggregates inter-
mediate goods produced by a continuum measure at, where at is the stock of adopted technologies
and the number of wholesale firms, of wholesale firms (indexed by k) to a consumption bundle
purchased by the consumer

yt =

(∫ at

0

y
ψ−1
ψ

kt dk

) ψ
ψ−1

. (35)

In Eq. (35) ψ denotes the elasticity of substitution among wholesale goods from the perspective of
the consumer who purchases the consumption bundle. The retail firm maximizes revenues taking
aggregate and input prices as given

max
ykt

pt

(∫ at

0

y
ψ−1
ψ

kt dk

) ψ
ψ−1

−
∫ at

0

pktyktdk. (36)

Taking the FOC w.r.t. any particular ykt yields the demand function for wholesale good k, which
is directly proportional to aggregate demand and inversely proportional to its relative price level

ψ

ψ − 1
pt

(∫ at

0

y
ψ−1
ψ

kt dk

) ψ
ψ−1−1 ψ − 1

ψ
y
ψ−1
ψ −1

kt − pkt = 0

pt

(∫ at

0

y
ψ−1
ψ

kt dk

) 1
ψ−1

y
−1
ψ

kt = pkt

ykt = yt

(
pt
pkt

)ψ
.

(37)

Substituting the demand function back in the aggregator function yields the ideal price index,
which is the CPI of the consumers consumption bundle

yt = ytp
ψ
t

(∫ at

0

(
1

pkt

)ψ−1
dk

) ψ
ψ−1

pt =

(∫ at

0

p1−ψkt dk

) 1
1−ψ

.

(38)

Since in this model all wholesale firms are identical in their pricing behavior, the integral in Eq.
(38) can be solved and rewritten as

pt = a
1

1−ψ
t pkt or pkt = a

1
ψ−1

t pt. (39)

The same is true for output, Eq. (35) can be solved and written as

yt = a
ψ
ψ−1

t ykt or ykt = a
ψ

1−ψ
t yt. (40)

4.2 Intermediate Good (Wholesale) Firms
The representative intermediate goods firm chooses capital kkt and unskilled labor lukt to produce
output by the following Copp-Douglas technology

ykt = θtk
α
ktl

1−α
ukt , (41)

with θt a stationary productivity shock to the intermediate goods sector. Wholesale firms then
choose inputs and the price of their output subject to the final good firms (consumers) demand
function derived in Eq. (37)

max
kkt, lukt, pkt

πkt = pktθtk
α
ktl

1−α
ukt − rtptkkt − wutlukt. (42)
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Rewriting Eq. (37) yields the inverse demand function pkt = pt

(
ykt
yt

)−1
ψ

= pt

(
θtk

α
ktl

1−α
ukt

yt

)−1
ψ

, and
the problem becomes

max
kkt, lkt

πkt = pty
1
ψ

t

(
θtk

α
ktl

1−α
ukt

)ψ−1
ψ − rtptkkt − wutlukt. (43)

Assuming that each intermediate good firm is very small w.r.t. the whole of intermediate goods
firms, so that its choice of inputs does not impact the aggregate price or quantity, yields the FOC’s

∂πkt
∂kkt

= pty
1
ψ

t

ψ − 1

ψ
θtαk

α−1
kt l1−αukt

(
θtk

α
ktl

1−α
ukt

)−1
ψ − rtpt = 0 ⇒ pktα

ykt
kkt︸ ︷︷ ︸

MR(k)

=
ψ

ψ − 1
rtpt︸︷︷︸

MC(k)

(44)

∂πkt
∂lukt

= pty
1
ψ

t

ψ − 1

ψ
θt(1− α)kαktl

−α
ukt

(
θtk

α
ktl

1−α
ukt

)−1
ψ − wut = 0 ⇒ pkt(1− α)

ykt
lukt︸ ︷︷ ︸

MR(l)

=
ψ

ψ − 1
wut︸︷︷︸

MC(l)

.

(45)

Inserting these FOC’s back into the inverse demand function gives the optimal pricing choice of
the individual wholesale firm

pkt = pty
1
ψ

t

(
θt

(
pktα

ykt
rtpt

ψ − 1

ψ

)α(
pkt(1− α)

ykt
wut

ψ − 1

ψ

)1−α
)−1

ψ

p
ψ+1
ψ

kt = pt

(
ykt
yt

)−1
ψ

(
θt
ψ − 1

ψ

(
α

rtpt

)α(
1− α
wut

)1−α
)−1

ψ

pkt =

(
θt
ψ − 1

ψ

(
α

rtpt

)α(
1− α
wut

)1−α
)−1

=
ψ

ψ − 1

1

θt

(rtpt
α

)α( wut
1− α

)1−α

︸ ︷︷ ︸
MC

.

(46)

This result is well known since Dixit & Stiglitz (1977) and states that in a monopolistically compet-
itive equilibrium featuring a continuum of identical firms, the optimal price of output is a constant
markup over the marginal cost.

4.3 Technology Adopters
Wholesale products are first invented and then adopted, but following Anzoategui et al. (2017)
this subsection describes their adoption conditional on their invention, before describing their in-
vention in the next section. The adoption process considered here is pro-cyclical but takes time.
It is also decentralized e.g. aggregate patterns are described without taking account of individual
firm adoptions.

Assuming that in each period new technologies are created, only a fraction λt of these tech-
nologies become directly usable in the same period. Whether a specific technology becomes usable
is thereby modelled a random draw with success probably λt. Once a technology is usable, all
wholesale firms are able to employ it immediately, which is modelled by an expansion in the num-
ber of varieties at. We will think of this expansion as the adopter selling the technology to a newly
created intermediate goods firm (a start-up). Pro-cyclical adoption behavior is then obtained by
endogenizing the probability λt that a new technology becomes usable and making it increasing in
the amount of resources devoted to adoption at the firm level. More formally, let zt be the stock of
invented technologies, then following Anzoategui et al. (2017), the probability 0 < λt < 1 is given
by a concave function

λt = κ(ztlsat)
ρa , (47)

where κ and 0 < ρa < 1 (λ′ > 0, λ′′ < 0) are constants, and lsat is the skilled labor investment
devoted to technology adoption in each period. The presence of zt accounts for the fact that the
adoption process becomes more efficient as the technological state of the economy improves. There
is also a technical need for this spillover in that it ensures a balanced growth path: As technolo-
gies grow, the number of new goods requiring adoption increases, but the supply of labor remains
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unchanged, so it needs to be scaled by zt. Following this description, if λ̄ is the steady state value
of λt, then the average time it takes for a new technology be adopted is 1/λ̄.

Once in usable form, the adopter sells the rights to the technology to a monopolistically com-
petitive wholesale firm, which earns a profit from employing the technology. The value to the
adopter of successfully bringing a new technology into use, vt, is therefore given by the present
discounted value of the wholesale firms profits from operating the technology. Accordingly, given
that rt+1 is the one period interest rate between t+ 1 and t, we can express, vt, as

vt = πt + φEt
vt+1

1 + rt+1
, (48)

where φ is the probability that the technology survives (i.e. does not become obsolete), which
works like a discount factor here. Iterating yields an expected discounted value. We can then
express the adopter’s maximization problem as choosing lsat to maximize the value Jt gained from
the acquisition of unadopted technologies, given by

Jt = max
lsat

− wstlsat + φEt

{
λtvt+1 + (1− λt)Jt+1

1 + rt+1

}
. (49)

The first term in this Bellman equation reflects total adoption expenditures, while the second is
the discounted benefit: The probability weighted sum of the values of adopted and unadopted
technologies. In Eq. (49) wst denotes the skilled wage paid to skilled labor engaged in adoption
and R&D, which is different from the unskilled wage wut paid by wholesale firms. The FOC
describing optimal adoption investment is

wst = ztλ
′
tφEt

{
vt+1 − Jt+1

1 + rt+1

}
= ρa

λt
lsat

φEt

{
vt+1 − Jt+1

1 + rt+1

}
. (50)

Eq. (50) states that the marginal gain from adoption expenditures: the increase in the adoption
success probability λt times the discounted difference between the value of an adopted versus an
unadopted technology is equated to the marginal cost wst. The term vt+1 − Jt+1 is pro-cyclical,
by virtue of the greater influence of near term profits on the value of adopted technologies relative
to unadopted ones. As a consequence, lsat varies pro-cyclically, and hence the pace of adoption,
given by λt, will also vary pro-cyclically. The description of adoption is closed by the following law
of motion describing the evolution of adopted technologies

at+1 = λtφ[zt − at] + φat, (51)

where zt − at is the stock of technologies available for adoption in period t.

4.4 Technology Innovators
Analogous to the adoption sector, there is a continuum measure unity of innovators that use skilled
labor to create new ideas, which adopters can then buy and transform into production plans for
intermediate goods bought by wholesale firms. Let lsrt be skilled labor employed in R&D by the
representative innovator and let ϑt be the marginal product of skilled labor producing a technology
in a given time-period

ϑt = χtztl
ρz−1
srt . (52)

In this equation lsrt denotes the aggregate amount of skilled labor working on R&D, which an
individual innovator takes as given. Following Romer (1990), the presence of zt makes this a linear
growth model. It is assumed that 0 < ρz < 1, implying that increased R&D in the aggregate
reduces the efficiency of R&D at the individual level. χt is an exogenous productivity shifter
following a stochastic process

logχt = (1− ρχ) logχ∗ + ρχ logχt−1 + εχt . (53)

The representative innovator chooses lsrt to maximize the expected value of the technology, as
given by Eq. (49), which is his/her compensation

max
lsrt

Et
lsrtϑtJt+1

1 + rt+1
− wstlsrt. (54)
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The FOC again equates the maginal discounted benefit of an additional unit of skilled labor in
innovation with its marginal cost

Et
ϑtJt+1

1 + rt+1
= Et

χtztl
ρz−1
srt Jt+1

1 + rt+1
= wst. (55)

Given that profits from intermediate goods are pro-cyclical, the value of an unadopted technology,
which depends on expected future profits, will also be pro-cyclical. Let φ again be the survival
rate for any given technology. Then, we can express the evolution of technologies as

zt+1 = φzt + ϑtlsrt or
zt+1

zt
= φ+ χtl

ρz
srt. (56)

4.5 Housholds
Households consume the consumption bundle sold by the retail firm at the CPI pt, and supply
skilled and unskilled labor with labor shares ςu, ςs. Their objective function is given by

Et

∞∑
t=0

βt

[
c1−σt

1− σ
− 1

µutςu

l1+ϕut

1 + ϕ
− 1

µstςs

l1+ϕst

1 + ϕ

]
. (57)

Following Comin (2009), µu and µs are preference-shifter shocks reflecting distortions in the labor
market such as labor market frictions, labor income taxes and the like. These shocks follow
stationary stochastic processes

logµut = ρµu logµu,t−1 + εµut (58)
logµst = ρµs logµs,t−1 + εµst. (59)

Households also invest in an aggregate investment good that wholesale firms use to replenish their
capital stocks. Their resource constraint, in the absence of borrowing, is therefore given by

pt(ct + it) = wutlut + wstlst + rtptkt + πt. (60)

The law of motion for the capital stock is again given by

kt+1 = (1− δ)kt + it. (61)

Substituting the capital accumulation rule into the budget constraint for it, yields the households
inter-temporal budget constraint

ptct + ptkt+1 − pt(1− δ)kt = wutlut + wstlst + rtptkt + πt. (62)

Following the optimization, the equations describing optimal consumption, skilled and unskilled
and labor supply are given as

lϕut = ςuµu
wut
cσt pt

(63)

lϕst = ςsµs
wst
cσt pt

(64)

c−σt = βEt
[
c−σt+1 (1− δ + rt+1)

]
. (65)

Finally, as shown above, skilled labor is divided into skilled labor devoted to technology adoption
and skilled labor devoted to R&D. Following Anzoategui et al. (2017), they are aggregated as
follows

lst = (zt − at)lsat + lsrt. (66)

An equilibrium condition completes the description of the model

yt = ct + it. (67)
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4.6 Aggregation
Before the model can be simulated, the relations concerning individual intermediate goods produc-
ers and technology adopters need to be aggregated. This is done with the aggregators for output
and prices in Equations (39) and (40), which I repeat below

yt = a
ψ
ψ−1

t ykt; pt = a
1

1−ψ
t pkt, (68)

and the relations
kt = atkkt; lut = atlukt; πt = atπkt. (69)

Using Eq. (46) the intermediate goods firms price can be represented in terms of the marginal
cost. Performing this replacement and aggregating gives the aggregate price, and aggregate FOC’s
describing the behavior of the wholesale sector

pt = a
1

1−ψ
t

ψ

ψ − 1
MCt (70)

MCtα
ykt
kkt

= rtpt ⇒ kt = a
1

1−ψ
t αyt

MCt
rtpt

(71)

MCt(1− α)
ykt
lukt

= wut ⇒ lut = a
1

1−ψ
t (1− α)yt

MCt
wut

. (72)

The production function and the profit equation must also be aggregated6

ykt = θtk
α
ktl

1−α
ukt ⇒ yt = a

1
ψ−1

t θtk
α
t l

1−α
ut (73)

πkt = pktθtk
α
ktl

1−α
ukt − wutlukt − rtptkkt ⇒ (74)

Πt = pta
1

ψ−1

t θtk
α
t l

1−α
ut − wutlut − rtptkt (75)

= ptyt − wutlut − rtptkt. (76)

For technology adopters and inventors, the values of adopted and unadopted technologies and the
corresponding FOC’s were solved at the individual adopter/innovator level. I define the aggregate
values of adopted and unadopted technologies as follows

vat = atvt; Jzt = ztJt. (77)

The relevant equations pertaining to adoption and innovation become

vat = Πt + φEt
vat+1at

at+1(1 + rt+1)
(78)

Jzt = Et

{
λtv

a
t+1

zt
at+1

+ (1− λt)Jzt+1
zt
zt+1

1 + rt+1

}
− wstlsatzt (79)

wstlsat = ρaλtφEt


vat+1

at+1
− Jzt+1

zt+1

1 + rt+1

 (80)

Et

ϑt
zt+1

Jzt+1

1 + rt+1
= wst. (81)

The model is now ready for simulations and summarized in Table (3).

6I replace πt by Πt to make it very explicit that the aggregate value of adopted technologies depends on aggregate
profits earned in the intermediate goods sector.
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Table 3: A Simple RBC Model with Endogenous Technology

Equation Definition

lϕut = ςuµu
wut
cσt pt

Unskilled labor Supply
lϕst = ςsµs

wst
cσt pt

Skilled labor Supply
c−σt = βEt

[
c−σt+1 (1− δ + rt+1)

]
Euler Equation

kt+1 = (1− δ)kt + it Capital Law of Motion

yt = a
1

ψ−1

t θtk
α
t l

1−α
ut Production Function

a
1

1−ψ
t α ytktMCt = rtpt Demand for Capital

a
1

1−ψ
t (1− α) ytlutMCt = wut Demand for labor

MCt = 1
θt

(
rtpt
α

)α ( wut
1−α

)1−α
Marginal Cost

a
1

ψ−1

t pt = ψ
ψ−1MCt (Optimal) Price Level

λt = κ(ztlsat)
ρa Adoption Success Probability

Πt = pta
1

ψ−1

t θtk
α
t l

1−α
ut − rtptkt − wutlut Intermediate Goods Aggregate Profit

vat = Πt + φEt
vat+1at

at+1(1+rt+1)
Value of Adopted Technology

Jzt = Et

{
λtv

a
t+1

zt
at+1

+(1−λt)Jzt+1
zt
zt+1

1+rt+1

}
− wstlsatzt Value of Unadopted Technology

wstlsat = ρaλtφEt

{
vat+1
at+1

−
Jzt+1
zt+1

1+rt+1

}
Optimal Adoption Investment

at+1 = λtφ[zt − at] + φat Evolution of Adopted Technology
ϑt = χtztl

ρz−1
srt Productivity of R&D

Et

ϑt
zt+1

Jzt+1

1+rt+1
= wst Optimal R&D Investment

zt+1 = φzt + ϑtlsrt Evolution of Technology
lst = (zt − at)lsat + lsrt Skilled labor Aggregation
yt = ct + it Equilibrium Condition
logχt = (1− ρχ) logχ∗ + ρχ logχt−1 + εχt R&D Shock
log θt = ρθ log θt−1 + εθt Productivity Shock
logµut = ρµu logµu,t−1 + εµut Unskilled labor Supply Shock
logµst = ρµs logµs,t−1 + εµst Skilled labor Supply Shock

4.7 Steady State Solution
Following Costa (2016) I normalize the price level to 1 p∗ = 1, and of the shocks θ∗ = µ∗u = µ∗s = 1.
In addition I set the equilibrium number of wholesale firms / adopted technologies a∗ = 1, and
following Anzoategui et al. (2017) I set the adoption success probability λ∗ = 0.05.

Starting off with the prices, from the Euler Equation it follows that

r∗ =
1

β
− (1− δ), (82)

and the optimal price equation gives

MC∗ =
ψ − 1

ψ
. (83)

From the marginal cost equation then

w∗u = (1− α)MC∗
1

1−α

(
r∗

α

) α
α−1

. (84)

The demand for capital is

k∗ = α
MC∗

r∗
y∗, (85)

and similarly the demand for labor is

l∗u = (1− α)
MC∗

w∗u
y∗. (86)
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From the capital law of motion it follows that

i∗ = δk∗ = δα
MC∗

r∗
y∗, (87)

and the unskilled labor supply equation gives

c∗ = (ςuw
∗
u)

1
σ l
−ϕσ
u = (ςuw

∗
u)

1
σ

(
(1− α)

MC∗

w∗u

)−ϕσ
y∗−

ϕ
σ . (88)

Now inserting Equations (87) and (88) in the equilibrium condition gives

y∗ = (ςuw
∗
u)

1
σ

(
(1− α)

MC∗

w∗u

)−ϕσ
y∗−

ϕ
σ + δα

MC∗

r∗
y∗. (89)

y∗ =

(
1− δαMC∗

r∗

)− σ
ϕ+σ

(
(1− α)

MC∗

w∗u

)− ϕ
ϕ+σ

(ςuwut)
1

ϕ+σ . (90)

This determines the equilibrium output y∗, and from the above equations k∗, l∗u, c∗ and i∗ are
easily determined. Turning now to the endogenous technology part of the model, the profit equation
gives

Π∗ = y∗ − r∗k∗ − w∗ul∗u, (91)
and the value of adopted technology is

va∗ = Π∗
1

1− φ
1+r∗

. (92)

The evolution of adopted technology gives

z∗ =
1− φ
λ∗φ

+ 1. (93)

Inserting the optimal adoption investment into the value of unadopted technology yields

Jz∗ = va∗z∗
1− ρaφ

r∗

λ∗ + 1− ρaφ
. (94)

The skilled labor supply gives

w∗s =
l∗ϕs c∗σ

ςs
, (95)

and the optimal adoption investment yields

l∗sa =
ςsρaλ

∗φ

l∗ϕs c∗σ
va∗ − Jz∗

z∗

1 + r∗
. (96)

Combining the optimal R&D investment with the evolution of technology gives

l∗sr =
ςsJ

z∗

l∗ϕs c∗σ
1− φ
1 + r∗

. (97)

The aggregation of skilled labor then determines the skilled labor stock

l∗s = (z∗ − 1)
ςsρaλ

∗φ

l∗ϕs c∗σ
va∗ − Jz∗

z∗

1 + r∗
+

ςsJ
z∗

l∗ϕs c∗σ
1− φ
1 + r∗

. (98)

l∗s =

 (z∗ − 1)ςsρaλ
∗φ
(
va∗ − Jz∗

z∗

)
+ ςsJ

z∗(1− φ)

c∗σ(1 + r∗)


1

1+ϕ

. (99)

With l∗s determined, from the above equations w∗s , l∗sa and l∗sr are also determined. Now the
evolution of technology yields

ϑ∗ =
z∗(1− φ)

l∗sr
. (100)

Finally, the parameter κ and the value of χ∗ are set to make the steady state consistent with the
model. The productivity of R&D yields

χ∗ =
ϑ∗

z∗
l∗1−ρzsr , (101)

and by the adoption success probability

κ = λ∗(z∗l∗sa)−ρa . (102)
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4.8 Simulation
Just as with the multi-sector RBC, I let dynare compute a 1st-order Taylor Expansion of the model
around the steady-state, and then perform a stochastic simulation over 2000 periods (200 periods
burn-in). The parameters used in this simulation fit the US economy and are shown in Table (4).

Table 4: Parameterization a la Anzoategui et al. (2017)

Parameter Value Parameter Value

σ 2 ϕ 1.5
φ 0.98 ψ 3.8571
ςu 0.5 ςs 0.5
α 0.3 δ 0.02
β 0.985 κ 0.0583
ρz 0.37 ρa 0.927
ρχ 0.95 ρθ 0.95
ρµu 0.95 ρµs 0.95

Figure (4) below shows the 500-Period IRF’s obtained from a 0.1 standard-deviation shock to the
productivity of R&D (χ). The shock initially shifts skilled labor into R&D, which comes at a slight
decrease in output and investment. The shock also has permanent effects on the productivity of
R%D (vartheta) and the stock of technologies Z, which is a consequence of the linear growth
specification. After the initial jump, skilled labor in R&D quickly returns back to normal (even
decreases a bit), and then the shock permanently increases output, investment, consumption and
profits (pi). With a further delay, the capital stock also permanently increases and the real interest
rate (R) decreases. Wages of unskilled labor (W ) and skilled labor (Ws) increase permanently,
and overall employment (lu and ls) decreases. The stock of adopted technologies (A), which is the
number of wholesale firms, increases, consumers experience a gain from increased variety. At the
same time, during the initial boom the values of adopted and unadopted technologies (V and J)
decrease, but recover and increase after about 100 periods. The adoption success probability λ

Figure 4: Impulse Response Functions Following 0.1 sd R&D Shock (χ)
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is permanently lower following the R&D shock. In short, a shock to the productivity of R&D
in this model has little immediate impact on the economy, but prolonged effects with an extended
period of increased output, consumption and technology creation and adoption following the initial
boom. The peak impact of this shock is reached after 100-periods, and its effect has not died out
after 500 periods. The overall response pattern resembles that of skill-biased technological change
with greater consumption and gains from variety for the consumer, more capital-intensive produc-
tion, higher wages for the employed, but disruptions in the labor market and an extended period
of greater unemployment following the shock.

Analogous, Figure (5) below shows the 500-Period IRF’s obtained from a 0.1 standard-deviation
productivity shock (θ). It is immediately clear that compared to the R&D shock this shock is much
more short-lived. It triggers direct increases in output, investment, consumption, capital and
profits. labor input also decreases while the wage goes up, the price of output and the marginal
cost decrease. On the technology side it seems like this shock decreases the stock of adopted and
unadopted technologies A and Z relative to their trends.The adoption success probability λ and
the productivity of R&D also decrease. In summary, the productivity shock only impacts the
production side of the economy, where it leads to increases in output, consumption, investment
and the capital stock, while decreasing the use of labor - similar as in the multi-sector RBC model
considered in section 2. The decreased use of labor also affects skilled labor, and via skilled labor
leads to a decrease in the rates of adoption and invention of new technologies. Overall this seems to
be just the opposite of the pro-cyclical response of R&D and adoption expected when constructing
the model. This conclusion however is erroneous, since strictly speaking in this model there should
not be a productivity shock that operates independently from technology creation and adoption.
For precisely this reason Comin (2009) introduces the labor supply shock as a substitute for the
productivity shock. Before considering the impulse responses to this shock however I note that the
responses to the productivity shock are typically a factor 10 larger than the responses to the R&D
shock - thus while the R&D shock has extended positive effects, its impact is much smaller than
the direct impact of the productivity shock.

Figure 5: Impulse Response Functions Following 0.1 sd Productivity Shock (θ)
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Figure (6) shows the 500-period IRF’s following a skilled labor supply shock. The IRF’s are
similar to those from the R&D shock, but the effect in output, investment, profits and skilled
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wages is lower than that of the R&D shock. It is key to realize that, in contrast to the productivity
shock, we here observe the pro-cyclical R&D and adoption behavior. Both the stock of adopted
technologies and the stock of invented technologies and their values increase. The adoption success
probability (λt) increases and after a while the productivity of R&D (ϑt) concurs. I do not report
the responses for the unskilled labor supply shock, but they are very similar to those from the
productivity shock i.e. the effect is much more short-lived.

Figure 6: Impulse Response Functions Following 0.1 sd Skilled Labor Supply Shock (µs)
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5 Multi-Sector RBC with Endogenous R&D and Technology
Diffusion

Having introduced and simulated both the N-sector RBC and the endogenous technology model,
this section introduces an integrated N-sector RBC economy in which each sector has its own
retailers, wholesale firms, technology adopters and technology innovators. While the construction of
the model will involve a bit of repetition in the algebra already introduced, the novelty of the model
comes in the form of very deep sectoral integration at 3 different levels: There will be intermediate
inputs in wholesale firms, technology adoption spillovers which are able to propagate through the
value chain from either upstream or downstream sectors, and spillovers in the productivity of R&D,
which can also propagate from upstream or downstream sectors in the value chain.

5.1 Final Good (Retail) Firms
Each sector i has perfectly competitive final goods firms that aggregate intermediate goods pro-
duced by a continuum (measure ait) of wholesale firms

yit =

(∫ ait

0

y
ψi−1

ψi

kit dki

) ψi
ψi−1

∀ i. (103)

ψi is the sector-specific elasticity of substitution among wholesale goods from the perspective of
the consumer who purchases the consumption bundle. The retail firm maximizes revenues taking
aggregate sector and input prices as given

max
ykit

pit

(∫ ait

0

y
ψi−1

ψi

kit dki

) ψi
ψi−1

−
∫ ait

0

pkitykitdki ∀ i. (104)

Taking the FOC w.r.t. any particular ykit yields the demand function for wholesale good ki, which
is directly proportional to aggregate demand and inversely proportional to its relative price level

ykit = yit

(
pit
pkit

)ψi
∀ i. (105)

Substituting the demand function back in the aggregator function yields the ideal sectoral price
index

pit =

(∫ ait

0

p1−ψikit dki

) 1
1−ψi

∀ i. (106)

Since in this model all wholesale firms are identical in their pricing behavior, the integrals for the
aggregator and price index can again be solved to yield

yit = a
ψi
ψi−1

it ykit and pit = a
1

1−ψi
it pkit ∀ i. (107)

5.2 Intermediate Goods (Wholesale) Firms
The representative intermediate goods firm in sector i chooses capital kkit, unskilled labor lukit and
intermediate goods from other sectors (j) Mkit to produce output by the following Copp-Douglas
technology

ykit = θitk
αi
kitl

βi
ukitM

1−αi−βi
kit ∀ i, (108)

with intermediate inputs composite:

Mkit =

 N∑
j=1

γ
1
ηi
ji m

ηi−1

ηi

jkit


ηi
ηi−1

∀ i. (109)

The notation is mji = morigin→destiny. θit is a stationary productivity shock to all wholesale firms
in sector i

log θit = ρθi log θi,t−1 + εθit + ε ∀ i, (110)
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where εθit is a sector-specific technology shock and εt is an aggregate technology shock. The
representative wholesale firm in each sector chooses inputs and the price to maximize profits in
each period, subject to the final good firms (consumers) demand function

max
lukit,kkit,mjkit,pkit

πkit = pkitθitk
αi
kitl

βi
ukit

 N∑
j=1

γ
1
ηi
ji m

ηi−1

ηi

jkit


ηi(1−αi−βi)

ηi−1

− wuitlukit − rtptkkit −
N∑
j=1

pjtmjkit ∀ i.

(111)

The individual firm is again assumed small, so that the unskilled wage wuit, the real interest rate
rt, the aggregate price index (CPI) pt, and price of sector j’s goods pjt are unaffected by the
particular firms demand for inputs. Rewriting the final good firms demand function for firm k’s
produce yields the inverse demand function

pkit = pit

(
ykit
yit

)−1
ψi

= pit

(
θitk

αi
kitl

βi
ukitM

1−αi−βi
kit

yit

)−1
ψi

∀ i. (112)

Inserting for pkit, the problem becomes

max
lukit,kkit,mjkit

πkit = pity
1
ψi
it

θitkαikitlβiukit
 N∑
j=1

γ
1
ηi
ji m

ηi−1

ηi

jkit


ηi(1−αi−βi)

ηi−1


ψi−1

ψi

− wuitlukit − rtptkkit −
N∑
j=1

pjtmjkit ∀ i.

(113)

The small size of the firm also guarantees that its input choices do not impact the aggregate sectoral
price or quantity, yields the FOC’s
∂πkit
∂kkit

= pity
1
ψi
it

ψi − 1

ψi
αi
ykit
kkit

y
−1
ψi

kit − rtpt = 0 ⇒ pkitαi
ykit
kkit︸ ︷︷ ︸

MR(k)

=
ψi

ψi − 1
rtpt︸︷︷︸

MC(k)

∀ i (114)

∂πkit
∂lukit

= pity
1
ψi
it

ψi − 1

ψi
βi
ykit
lukit

y
−1
ψi

kit − wuit = 0 ⇒ pkitβi
ykit
lukit︸ ︷︷ ︸

MR(lu)

=
ψi

ψi − 1
wuit︸︷︷︸

MC(lu)

∀ i (115)

∂πkit
∂mjkit

= pity
1
ψi
it

ψi − 1

ψi
(1− αi − βi)γ

1
ηi
ji m

−1
ηi

jkitθitk
αi
kitl

βi
ukit

 N∑
j=1

γ
1
ηi
ji m

ηi−1

ηi

jkit


1−ηiαi−ηiβi

ηi−1

y
−1
ψi

kit − pjt = 0

(116)

⇒ pkit(1− αi − βi)
(

γji
mjkit

) 1
ηi

ykitM
1−ηi
ηi

kit︸ ︷︷ ︸
MR(mj)

=
ψi

ψi − 1
pjt︸︷︷︸

MC(mj)

∀ i. (117)

There are
∑
i aiN

2 of Eq. (117), one per intermediate input for each wholesale firm in each sector.
Now one needs to find the price for each firm pkit. Inserting these FOC’s back into the inverse
demand function gives the optimal pricing choice of the individual wholesale firm

pkit = pity
1
ψi
it

(
θit

(
pkitαi

ykit
rtpt

ψi − 1

ψi

)αi (
pkitβi

ykit
wuit

ψi − 1

ψi

)βi
M1−αi−βi
kit

)−1
ψi

∀ i. (118)

A problem here is that Eq. (117) depends on both Mkit and mjkit, and all quantities need to be
removed from this pricing equation. Therefore rewriting Eq. (117) yields

m
1
ηi

jkit =
pkit
pjt

ψi − 1

ψi
(1− αi − βi)γ

1
ηi
ji ykitM

1−ηi
ηi

kit ∀ i

m
ηi−1

ηi

jkit =

(
pkit
pjt

ψi − 1

ψi
(1− αi − βi)ykit

)ηi−1
γ
ηi−1

ηi
ji M

(1−ηi)(ηi−1)

ηi

kit ∀ i,
(119)
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thus

Mkit =

 N∑
j=1

γ
1
ηi
ji m

ηi−1

ηi

jkit


ηi
ηi−1

=

 N∑
j=1

γ
1
ηi
ji

(
pkit
pjt

ψi − 1

ψi
(1− αi − βi)ykit

)ηi−1
γ
ηi−1

ηi
ji M

(1−ηi)(ηi−1)

ηi

kit


ηi
ηi−1

∀ i

Mkit =

(
pkit

ψi − 1

ψi
(1− αi − βi)ykit

)ηi
M1−ηi
kit

 N∑
j=1

γjip
1−ηi
jt


ηi
ηi−1

∀ i

Mkit = pkit
ψi − 1

ψi
(1− αi − βi)ykit

 N∑
j=1

γjip
1−ηi
jt


−1

1−ηi

︸ ︷︷ ︸
1/pMit

∀ i

= pkit
ψi − 1

ψi
(1− αi − βi)

ykit
pMit

∀ i.

(120)

Inserting this in Eq. (118) yields

pkit = pity
1
ψi
it

(
θit

(
pkitαi

ykit
rtpt

ψi − 1

ψi

)αi (
pkitβi

ykit
wuit

ψi − 1

ψi

)βi (
pkit

ψi − 1

ψi
(1− αi − βi)

ykit
pMit

)1−αi−βi
)−1

ψi

p
ψi+1

ψi

kit = pit

(
ykit
yit

)−1
ψi

︸ ︷︷ ︸
pkit

(
θit
ψi − 1

ψi

(
αi
rtpt

)αi ( βi
wuit

)βi (1− αi − βi
pMit

)1−αi−βi
)−1

ψi

∀ i

pkit =
ψi

ψi − 1

1

θit

(
rtpt
αi

)αi (wuit
βi

)βi ( pMit

1− αi − βi

)1−αi−βi

︸ ︷︷ ︸
MCit

∀ i.

(121)

The result is again familiar from Dixit & Stiglitz (1977), in a monopolistically competitive equi-
librium the optimal price of each firm is a constant mark-up over its marginal cost.

5.3 Technology Adopters
Each sector is now populated by a continuum measure unity of technology adopters which buy
ideas from the technology innovators, and convert them into production plans bought by wholesale
firms. The probability that an idea can be successfully converted into a production plan in the
present-period is sector specific and given by λi. As before, the probability 0 < λit < 1 is given by
a concave function

λit = κi

ωadi N∑
j=1

γjiajt + ωaui

N∑
j=1

γijajt

ρMai

(zitlsait)
ρai ∀ i, (122)

where κ, 0 < ρMa < 1 and 0 < ρa < 1 are constants (λ′ > 0, λ′′ < 0). The first term reflects
adoption learning spillovers in the sector from itself and other sectors, where the first sum reflects
adoption pressures resulting from downstream sectors in the value chain (i.e. sectors that supply
inputs to sector i), and the second sum reflects adoption pressures from the upstream sectors (i.e.
sectors that buy sector i’s output). These spillovers reflect the input-output-mix in the wholesale
sector, and their intensity is regulated by ρMai, and the weights ωadi and ωaui reflecting the relative
importance of downstream and upstream pressures. lsait is the skilled labor investment devoted to
technology adoption in each period. The presence of the sector-specific technology stock zit again
accounts for the fact that the adoption process becomes more efficient as the technological state
of the economy improves.
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Apart from Eq. (122) everything is as in the one-sector model: Adopters sell the production
plan to a monopolistically competitive wholesale firm, thus the value of such a production plan is
the present-discounted value of the profits of a wholesale firm

vit = πkit + φiEt
vi,t+1

1 + rt+1
∀ i, (123)

where φi is the sector-specific probability that the technology survives (i.e. does not become
obsolete), which works like a discount factor. The adopter again chooses lsait to maximize the
value Jit gained from the acquisition of unadopted technologies, given by

Jit = max
lsait

− wsitlsait + φiEt

{
λitvi,t+1 + (1− λit)Ji,t+1

1 + rt+1

}
∀ i. (124)

The FOC describing optimal adoption investment is

wsit = zitλ
′
itφiEt

{
vi,t+1 − Ji,t+1

1 + rt+1

}
= ρai

λit
lsait

φiEt

{
vi,t+1 − Ji,t+1

1 + rt+1

}
∀ i, (125)

and the evolution of adopted technologies is

ai,t+1 = λitφi[zit − ait] + φiait ∀ i, (126)

where zit − ait is the stock of sector-specific technologies available for adoption.

5.4 Technology Innovators
Each sector also has a continuum measure unity of innovators that use skilled labor to create new
intermediate goods. Let lsrit be skilled labor employed in R&D by the representative innovator
in sector i and let ϑit be the marginal product of skilled labor producing a technology in a given
time-period

ϑit = χitzit

ωrdi∑
j 6=i

γjizjt + ωrui
∑
j 6=i

γijzjt

ρMri

lρzi−1srit ∀ i. (127)

lsrit here represents the aggregate amount of skilled labor working on R&D, which an individual
innovator takes as given, and 0 < ρzi < 1, implying that increased R&D in the aggregate reduces
the efficiency of R&D at the individual level. Also ρMri < 1, so that there are diminishing returns to
upstream or downstream innovation for the sectors own innovation process. χit is a sector-specific
exogenous productivity shifter following a stochastic process

logχit = (1− ρχi) logχ∗i + ρχi logχi,t−1 + εχit ∀ i. (128)

The representative innovator chooses lsrit to maximize the expected value of the technology, as
given by Eq. (124)

max
lsrit

Et
lsritϑitJi,t+1

1 + rt+1
− wsitlsrit ∀ i. (129)

The FOC again equates the maginal discounted benefit of an additional unit if skilled labor in
innovation with its marginal cost

Et
ϑitJi,t+1

1 + rt+1
= wsit ∀ i. (130)

Given that profits from intermediate goods are pro-cyclical, the value of an unadopted technology,
which depends on expected future profits, will be also be pro-cyclical. Let φi again be the survival
rate for any given technology. Then, we can express the evolution of technologies as

zi,t+1 = φizit + ϑitlsrit ∀ i. (131)
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5.5 Housholds
Households consume the consumption bundle sold by the representative retail firm in each sector
at the CPI pit, and supply skilled and unskilled labor to each sector. Households also invest in an
aggregate investment good that wholesale firms of all sectors use to replenish their capital stocks.
Aggregate consumption is a CES aggregate of consumption goods produced by N sectors, skilled
labor lst and unskilled labor lut are CES aggregates of sectoral skilled and unskilled labor stocks

ct =

[
N∑
i=1

ω
1
ε
i c

ε−1
ε

it

] ε
ε−1

, lt = lut + lst, (132)

lut =

[
N∑
i=1

ς
1
νu
ui l

νu−1
νu

uit

] νu
νu−1

, lst =

[
N∑
i=1

ς
1
νs
si l

νs−1
νs

sit

] νs
νs−1

. (133)

Skilled labor in each sector is again divided into skilled labor used for technology adoption and
skilled labor used for R&D. Following Anzoategui et al. (2017), this allocation is endogenously
determined, by the adoption gap zit − ait

lsit = (zit − ait)lsait + lsrit ∀ i. (134)

I will assume again that all CES-shares are time-invariant. A representative household again
maximizes lifetime utility w.r.t. consumption and labor supply, given by

Et

∞∑
t=0

βt

[
c1−σt

1− σ
− 1

µutςu

l1+ϕut

1 + ϕ
− 1

µstςs

l1+ϕst

1 + ϕ

]
∀ i, (135)

where β is the intertemporal discount factor, σ is the relative risk aversion coefficient, and ϕ is the
marginal disutility w.r.t. labor supply. Assuming that households own the firms, they maximize
this utility function subject to the intertemporal budget constraint. Following Comin (2009), with
µut and µst preference shifter shocks are introduced to shock the labor supply. These shocks
can also be interpreted as capturing frictions in the labor market and taxes. The shocks follow
stationary stochastic processes

logµut = ρµu logµu,t−1 + εµut , (136)

logµst = ρµs logµs,t−1 + εµst . (137)

The price index is

pt =

[
N∑
i=1

ωip
1−ε
it

] 1
1−ε

, (138)

and denotes the cost of capital investment in each sector. Since capital is fully mobile between
sectors, there is one real interest rate rt. In a model without borrowing, households resource
constraint therefore stipulates that consumption and investment in each period need to be financed
by wage-income, capital income and dividends

N∑
i=1

(pitcit + ptiit − wuitluit + wsitlsit − rtptkit − πit) = 0. (139)

The law of motion for the aggregate capital stock is given by

kt+1 = (1− δ)kt + it. (140)

Since capital is fully mobile, there is also one economy-wide depreciation rate δ. Capital, investment
and firm profits have simple linear aggregators

kt =

N∑
i=1

kit, it =

N∑
i=1

iit, πt =

N∑
i=1

πit. (141)

Following again Herrendorf et al. (2014), the optimization problem can be broken down into one
intertemporal choice problem and 3 allocation problems. Starting with the latter, taking the
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aggregate consumption quantity as given, the representative household chooses cit subject to a
resource constraint

∑N
i=1 pitcit = ptct. Similarly, skilled and unskilled workers maximize their wage

income from skilled wage
∑N
i=1 wsitlsit and unskilled wage

∑N
i=1 wuitluit subject to the aggregators.

The outcomes of these problems give a simple set of equations describing optimal consumption,
skilled and unskilled labor allocation7

cit = ctωi

(
pit
pt

)−ε
; luit = lutςui

(
wuit
wut

)νu
; lsit = lstςsi

(
wsit
wst

)νs
, (142)

with optimal wage indices:

wut =

[
N∑
i=1

ςuiw
1−νu
uit

] 1
1−νu

; wst =

[
N∑
i=1

ςsiw
1−νs
sit

] 1
1−νs

. (143)

Using the aggregators and wage/price indices, the budget constraint in Eq. (139) can be aggregated

pt(ct + it) = wutlut + wstlst + rtptkt + πt. (144)

Substituting the capital accumulation rule into the budget constraint for it, yields

ptct + ptkt+1 − pt(1− δ)kt = wutlut + wstlst + rtptkt + πt. (145)

Maximizing Eq. (135) subject to this budget constraint yields the following equations describing
optimal aggregate behavior

lϕut = ςuµu
wut
cσt pt

(146)

lϕst = ςsµs
wst
cσt pt

(147)

c−σt = βEt
[
c−σt+1 (1− δ + rt+1)

]
. (148)

The model is closed with a set of equilibrium conditions, one for each sector

yit = cit + iit +

N∑
j=1

mijt ∀ i. (149)

5.6 Aggregation
Before the model can be simulated, the relations concerning individual intermediate goods pro-
ducers and technology adopters in each sector again need to be aggregated. This is done with the
aggregators for output and prices in Eq. (107)

yit = a
ψi
ψi−1

it ykit; pit = a
1

1−ψi
it pkit ∀ i, (150)

and the relations

kit = aitkkit; luit = aitlukit; mjit = aitmjkit; Mit = aitMkit; πit = aitπkit. (151)

Using Eq. (121) the intermediate goods firms price can further be represented in terms of the
marginal cost. Doing this replacement and aggregating gives the aggregate FOC’s describing the
behavior of the wholesale sectors

MCitαi
ykit
kkit

= rtpt ⇒ kit = a
1

1−ψi
it αiyit

MCit
rtpt

∀ i (152)

MCitβi
ykit
lukit

= wuit ⇒ luit = a
1

1−ψi
it βiyit

MCit
wuit

∀ i (153)

MCit(1− αi − βi)
(

γji
mjkit

) 1
ηi

ykitM
1−ηi
ηi

kit = pjt ⇒ (154)

mjit = a
ηi

1−ψi
it (1− αi − βi)ηiyηiit

(
MCit
pjt

)ηi
γjiM

1−ηi
it ∀ i.

(155)
7Again for the labor allocation problems, I replaced −ν by ν to get the right behaviour → the sector with the

relatively higher wage gets supplied more labor.
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The production function and the profit equation must also be aggregated

ykit = θitk
αi
kitl

βi
ukitM

1−αi−βi
kit ⇒ yit = a

1
ψi−1

it θitk
αi
it l

βi
uitM

1−αi−βi
it ∀ i (156)

πkit = pkitθitk
αi
kitl

βi
ukitM

1−αi−βi
kit − wuitlukit − rtptkkit −

N∑
j=1

pjtmjkit ∀ i ⇒ (157)

Πit = pita
1

ψi−1

it θitk
αi
it l

βi
uitM

1−αi−βi
it − wuitluit − rtptkit −

N∑
j=1

pjtmjit ∀ i (158)

= pityit − wuitluit − rtptkit −
N∑
j=1

pjtmjit ∀ i. (159)

For technology adopters and inventors, the values of adopted and unadopted technologies and the
corresponding FOC’s were solved at the individual adopter/innovator level. I define the aggregate
sectoral values of adopted and unadopted technologies as follows

vait = aitvit; Jzit = zitJit ∀ i. (160)

The equations then become

vait = Πit + φiEt
vai,t+1ait

ai,t+1(1 + rt+1)
∀ i (161)

Jzit = Et

{
λitv

a
i,t+1

zit
ai,t+1

+ (1− λit)Jzi,t+1
zit

zi,t+1

1 + rt+1

}
− wsitlsaitzit ∀ i (162)

wsitlsait = ρaiλitφiEt


vai,t+1

ai,t+1
− Jzi,t+1

zi,t+1

1 + rt+1

 ∀ i (163)

Et

ϑit
zi,t+1

Jzi,t+1

1 + rt+1
= wsit ∀ i. (164)

The model is now completed and summarized in Table (5).
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Table 5: N-Sector RBC Model with Endogenous R&D and Technology Diffusion

Equation Definition

lt = lut + lst labor Aggregation (Optional)
lϕut = ςuµu

wut
cσt pt

Unskilled labor Supply
lϕst = ςsµs

wst
cσt pt

Skilled labor Supply
c−σt = βEt[c

−σ
t+1(1− δ + rt+1)] Euler Equation

cit = ctωi

(
pit
pt

)−ε
∀ i Optimal Consumption Choice

luit = lutςui

(
wuit
wut

)νu
∀ i Optimal Unskilled labor Allocation

lsit = lstςsi

(
wsit
wst

)νs
∀ i Optimal Skilled labor Allocation

wut =
[∑N

i=1 ςuiw
1−νu
uit

] 1
1−νu Average Unskilled Wage Rate

wst =
[∑N

i=1 ςsiw
1−νs
sit

] 1
1−νs Average Skilled Wage Rate

kt+1 = (1− δ)kt + it Capital Law of Motion

yit = a
1

ψi−1

it θitk
αi
it l

βi
uitM

1−αi−βi
it ∀ i Production Function Sector i

Mit =

[∑N
j=1 γ

1
ηi
ji m

ηi−1

ηi
jit

] ηi
ηi−1

∀ i Intermediate Inputs Sector i

kit = a
1

1−ψi
it αiyit

MCit
rtpt

∀ i Demand for Kapital Sector i

luit = a
1

1−ψi
it βiyit

MCit
wuit

∀ i Demand for labor Sector i

mjit = a
ηi

1−ψi
it (1− αi − βi)ηiyηiit

(
MCit
pjt

)ηi
γjiM

1−ηi
it ∀ i ∀ j Demand for sector j, Sector i

pt =
[∑N

i=1 ωip
1−ε
it

] 1
1−ε

Ideal Price Index

pMit
=
[∑N

j=1 γjip
1−ηi
jt

] 1
1−ηi ∀ i Price of Intermediates Sector i

MCit = 1
θit

(
rtpt
αi

)αi (
wuit
βi

)βi ( pMit
1−αi−βi

)1−αi−βi
∀ i Marginal Cost Sector i

pit = a
1

1−ψi
it

ψi
ψi−1MCit ∀ i (Optimal) Price Level Sector i

λit = κi

(
ωadi

∑N
j=1 γjiajt + ωaui

∑N
j=1 γijajt

)ρMai
(zitlsait)

ρai ∀ i Adoption Success Probability Sector i

Πit = pityit − wuitluit − rtptkit −
∑N
j=1 pjtmjit ∀ i Intermediate Goods Aggregate Profit Sector i

vait = Πit + φiEt
vai,t+1ait

ai,t+1(1+rt+1)
∀ i Value of Adopted Technology Sector i

Jzit = Et

{
λitv

a
i,t+1

zit
ai,t+1

+(1−λit)Jzi,t+1
zit

zi,t+1

1+rt+1

}
− wsitlsaitzit ∀ i Value of Unadopted Technology Sector i

wsitlsait = ρaiλitφiEt

{
vai,t+1
ai,t+1

−
Jzi,t+1
zi,t+1

1+rt+1

}
∀ i Optimal Adoption Investment Sector i

ai,t+1 = λitφi[zit − ait] + φiait ∀ i Evolution of Adopted Technology Sector i
ϑit = χitzit

(
ωrdi

∑
j 6=i γjizjt + ωrui

∑
j 6=i γijzjt

)ρMri
lρzi−1srit ∀ i Productivity of R&D sector i

Et

ϑit
zi,t+1

Jzi,t+1

1+rt+1
= wsit ∀ i Optimal R&D Investment Sector i

zi,t+1 = φizit + ϑitlsrit ∀ i Evolution of Technology Sector i
lsit = (zit − ait)lsait + lsrit ∀ i Skilled labor Aggregation Sector i
yit = cit + iit +

∑N
j=1mijt ∀ i Equilibrium Condition Sector i

logχit = (1− ρχi) logχ∗i + ρχi logχi,t−1 + εχit ∀ i R&D Shock Sector i
log θit = ρθi log θi,t−1 + εθit + εt ∀ i Productivity Shock Sector i
logµut = ρµu logµu,t−1 + εµut Unskilled labor Supply Shock
logµst = ρµs logµs,t−1 + εµst Skilled labor Supply Shock
kt =

∑N
i=1 kit Capital Aggregation

it =
∑N
i=1 iit Investment Aggregation

yt =
∑N
i=1 yit Output Aggregation (Optional)
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5.7 Steady State Solution
To solve for the steady state I normalize the steady state level of adopted technology (firms)
in each sector a∗i = 1 ∀ i, but I will keep these a∗i in the steady-state equations in case asym-
metric stocks of adopted technology are beneficial for calibrations of the model. For the shocks
θ∗i = µ∗u = µ∗s = 1 ∀ i, while χ∗i needs to be calibrated for each sector. Following Anzoategui et al.
(2017) further the adoption success probability λ∗i is set to a value in each sector. In the simulation
I will assume λ∗i = 0.05 ∀ i.

Starting off with the prices, from the Euler Equation it follows that

r∗ =
1

β
− (1− δ). (165)

The next step is to determine the prices and wages. Since all prices and wages are related, and, in
a perfectly competitive equilibrium obey Walras Law, I will again apply a normalization by setting
the average unskilled wage w∗u = 1. With this normalization, the average unskilled wage can be
written as

1 =

N∑
i=1

ςuiw
∗1−νu
ui ⇒ w∗ui =

 1

ςui
−
∑
j 6=i

ςuj
ςui

w∗1−νuuj

 1
1−νu

∀ i. (166)

Inserting the optimal sectoral price into the marginal cost equation for MC∗i yields

w∗i = βi

(
p∗i a

1
1−ψi
it

ψi
ψi − 1

θ∗i

) 1
βi
(
r∗p∗

αi

)−αiβi ( p∗Mi

1− αi − βi

)αi+βi−1

βi

∀ i. (167)

The pricing problem can now be solved numerically, either by taking Eq. (166) and Eq. (167)
and solving a system of 2N equations with 2N unknowns (w∗i and p∗i ), or by plugging Eq. (167)
into the optimal sectoral price equation, solving a system of N equations in p∗i and then using Eq.
(167) to get the wages. With prices and wages determined, the next step is to solve the system of
equilibrium conditions to get the outputs y∗i . The demand for capital is

k∗i =
a
∗ 1

1−ψi
i αiMC∗i

r∗p∗
y∗i ∀i, (168)

and similarly the demand for labor

l∗ui =
a
∗ 1

1−ψi
i βiMC∗i

w∗ui
y∗i ∀i. (169)

From the capital law of motion, which can be disaggregated, it follows that

i∗i = δk∗i = δ
a
∗ 1

1−ψi
i αiMC∗i

r∗p∗
y∗i ∀i. (170)

Combining the optimal consumption choice with the unskilled labor supply equation and the
optimal unskilled labor allocation yields

c∗i =

(
ςuw

∗
u

lϕup∗

) 1
σ

ωi

(
p∗i
p∗

)−ε
=

(
ςuw

∗
u

p∗

) 1
σ

ωi

(
p∗i
p∗

)−ε(
l∗ui
ςui

)−ϕσ (w∗ui
w∗u

) νuϕ
σ

∀ i. (171)

Now inserting also the demand for labor gives

c∗i =

(
ςuw

∗
u

p∗

) 1
σ

ωi

(
p∗i
p∗

)−ε(
a
∗ 1

1−ψi
i

βi
ςui

MC∗i
w∗ui

)−ϕσ (w∗ui
w∗u

) νuϕ
σ

y
∗−ϕσ
i ∀ i. (172)

The FOC’s for the intermediate Goods supplied by sector i to other sectors are

mijt = a

ηj
1−ψj
jt (1− αj − βj)ηjy

ηj
jt

(
MCjt
pit

)ηj
γijM

1−ηj
jt ∀ i ∀ j, (173)
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with

Mjt =

[
N∑
k=1

γ
1
ηj

kj m

ηj−1

ηj

kjt

] ηj
ηj−1

∀ j. (174)

These FOC’s need to be rewritten in terms of outputs and prices and then inserted into the
equilibrium conditions. Dividing two of the mkj yields

mk1jt

mk2jt
=
γk1j
γk2j

(
pk2t
pk1t

)ηj
⇒ mk1jt =

γk1j
γk2j

(
pk2t
pk1t

)ηj
mk2jt ∀ j ∀ k. (175)

letting k1 = k and k2 = i and plugging Eq. (175) into Eq. (174) yields

Mjt =

[
N∑
k=1

γkjγ

1−ηj
ηj

ij

(
pit
pkt

)ηj−1] ηj
ηj−1

mijt ∀ j ∀ i. (176)

Now plugging this back into Eq. (173) yields

mijt = a

ηj
1−ψj
jt (1− αj − βj)ηjy

ηj
jt

(
MCjt
pit

)ηj
γij

[
N∑
k=1

γkjγ

1−ηj
ηj

ij

(
pit
pkt

)ηj−1] ηj(1−ηj)ηj−1

m
1−ηj
ijt (177)

mijt = a
1

1−ψj
jt (1− αj − βj)yjtγ

1
ηj

ij

MCjt
pit

[
N∑
k=1

γkjγ

1−ηj
ηj

ij

(
pit
pkt

)ηj−1]−1
∀ j ∀ i. (178)

Plugging Equations (170), (172) and (178) into the equilibrium condition gives a system of N
equations in the sectoral outputs y∗i , which also needs to be solved numerically

y∗i = c∗i + i∗i +

N∑
j=1

m∗ij ∀ i. (179)

With outputs, wages and prices determined, c∗i , i∗i , k∗i , m∗ij and l∗ui are also determined by the
above equations. Now the profit equation gives

Π∗i = p∗i y
∗
i − r∗p∗k∗i − w∗uil∗ui −

N∑
j=1

p∗jm
∗
ji ∀ i, (180)

and the value of adopted technology is

va∗i = Π∗i
1

1− φi
1+r∗

∀ i. (181)

The evolution of adopted technology gives

z∗i =

(
1− φi
λ∗iφi

+ 1

)
a∗i ∀ i. (182)

Inserting the optimal adoption investment into the value of unadopted technology gives

Jz∗i = va∗i
z∗i
a∗i

1− ρaiφi
r∗

λ∗
i

+ 1− ρaiφi
∀ i. (183)

Inserting the skilled labor supply into the optimal unskilled labor allocation gives

w∗si =

(
l∗si
l∗sςsi

) 1
νs

ws =

(
l∗si
l∗sςsi

) 1
νs l∗ϕs c∗σp∗

ςs
=

(
l∗si
ςsi

) 1
νs c∗σp∗

ςs
l
∗− 1

νs
+ϕ

s , (184)

with

l∗s =

[
N∑
i=1

ς
1
νs
si l
∗ νs−1

νs
si

] νs
νs−1

. (185)
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The optimal adoption investment yields

l∗sai =
ρaiλ

∗
iφi

w∗si

va∗i
a∗i
− Jz∗i

z∗i

1 + r∗
. (186)

Combining the optimal R&D investment with the evolution of technology gives

l∗sri =
Jz∗i
w∗si

1− φi
1 + r∗

. (187)

Now inserting Eq. (185) into Eq. (184), Eq. (184) into Equations (186) and (187), and Equations
(186) and (187) into the aggregation of skilled labor

l∗si = (z∗i − a∗i )l∗sai + l∗sri, (188)

gives a system of N equations with N unknowns, which can be solved numerically for the l∗si. With
l∗si determined, w∗si, l∗sai and l∗sri are also determined. Now the evolution of technology yields

ϑ∗i =
z∗i (1− φi)

l∗sri
, (189)

and the productivity of R&D yields

χ∗i =
ϑ∗i
z∗i

ωrdi∑
j 6=i

γjiz
∗
j + ωrui

∑
j 6=i

γijz
∗
j

−ρMri l∗1−ρzisri . (190)

Finally, the parameter κ is determined by the adoption success probability to make the steady
state consistent with the model8

κi = λ∗i

ωadi N∑
j=1

γjia
∗
j + ωaui

N∑
j=1

γija
∗
j

−ρMai (z∗i l
∗
sai)
−ρai . (191)

5.8 Simulation
With a stylized 2-sector version of the model, I let dynare compute a 1st-order Taylor Expansion
of the model around the steady-state, and then perform a stochastic simulation over 2000 periods
(200 periods burn-in). The parameters used in this simulation are:

8If all a∗i = 1, the adoption spillover term disappears.
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Table 6: Parameterization a la Anzoategui et al. (2017)

Parameter Value Parameter Value

σ 2 ϕ 1.5
β 0.985 δ 0.02
α1 0.35 α2 0.35
β1 0.3 β2 0.3
ε 0.8
νu 0.8 νs 0.8
η1 0.8 η2 0.8
ω1 0.5 ω2 0.5
ωau1 0.5 ωau2 0.5
ωad1 0.5 ωad2 0.5
ωru1 0.5 ωru2 0.5
ωrd1 0.5 ωrd2 0.5
ςu 0.5 ςs 0.5
ςu1 0.5 ςu2 0.5
ςs1 0.5 ςs2 0.5
γ11 0.5 γ21 0.5
γ12 0.5 γ22 0.5
φ1 0.98 φ2 0.98
ψ1 3.8571 ψ2 3.8571
ρa1 0.927 ρa2 0.927
ρz1 0.37 ρz2 0.37
ρMa1 0 ρMa2 0
ρMr1 0 ρMr2 0
ρχ1

0.95 ρχ2
0.95

ρθ1 0.95 ρθ2 0.95
ρµu 0.95 ρµs 0.95
κ1 0.082 κ2 0.082

Note that in this parameterization ρMai = ρMri = 0 ∀ i, so adoption and R&D spillovers are
initially disabled. Figure (7) below shows the 500-Period Impulse Response Functions (IRF’s)
obtained from a 0.1 standard-deviation shock to the productivity of R&D in sector 1 (χ1). The
shock increases the productivity of R&D in sector 1, and the stocks of invented and asopted
technologies in sector 1. As in the one-sector model, during the adoption boom the adoption
success probability in sector 1 decreases. Sector 2 displays the opposite response: The stocks of
invented and adopted technology decrease vis-a-vis their previous trend, and the productivity of
R&D also decreases after some curious oscillation. On the nominal side of things, the price of
output in sector one initially decreases, but starts increasing after about 100 periods, while the
price in sector 2 immediately goes up. The skilled and unskilled wages un both sectors increase,
which is mirrored by an overall decline in the use of labor. In sector 1 the skilled wage immediately
reponds to the shock, triggered by a spike in the use of skilled labor for R&D at the time of the
shock. Up to this point the pattern observed in the IRF’s is what could reasonably be expected
from a combination of the two models previously considered. On the real side of the economy, the
aggregate variables also respond to the shock in the same way as in the one-sector model, but there
are some surprises concerning the relative response of the two sectors. It is curious that sector 2
seems to reap overall more benefits in terms of output, investment, capital accumulation and profits
than sector 1. Only the consumption benefits of sector 1 are greater than in sector 2. Following
the shock, sector 1 initially uses less intermediate inputs, and overall the supply of inputs from
sector 1 to sector 2 increases asymmetrically. These results suggest the following interpretation: In
a two sector set-up, the R&D shock to sector 1 lets this sector concentrate on R&D and adoption,
while initially neglecting the real economy and shifting economic activity to sector 2. Overall the
economy benefits from the shock, its effects on the real economy are beneficial for both sectors,
and the pattern is one of skill-biased technological change as in the one-sector model, but the only
immediate gain from the shock realized in sector 1 is an increase in consumption and variety. For
future research, it would be interesting to see whether the introduction of frictions such as price-
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Figure 7: Impulse Response Functions Following 0.1 sd R&D Shock (χ1)
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and wage stickiness or investment adjustment costs would change the observed sectoral re-
sponses and the distribution of gains from the shock in some critical respect.

In Figure (8), I repeat the R&D shock, but now allow for some R&D spillovers ρMri = 0.2 ∀ i,
and some slight adoption spillovers ρMai = 0.1 ∀ i9. It is evident that the model is now on the
verge of non-stationarity. The spillovers in R&D and adoption induce prolonged effects on output,
incestment, consumption, profits and the stocks of adopted and unadopted technologies. The over-
all reponse pattern however is similar as in Figure (7). Notable differences to Figure (7) are the
productivity of R&D in sector 2, which also permanently increased thanks to the spillover from
sector 1, and the responses of prices and profits, which now permanently decreased in both sectors
(for which I have no good explanation).

For the sake of completeness, in Figure (9) I show the IRF’s from a 1 sd productivity shock to
sector 1. As expected the effect is larger but dies out much quicker compared to the R&D shock.
Just like in the one-sector model, the shock shifts resources out of R&D and adoption and into
the production-side of the economy. Again however this shock is not really interesting because it
occurs independently from any movements in R&D and technology adoption, which is unrealistic.

9I would like to have greater adoption than R&D spillovers, but it turns out that this leads to stability problems
with the model which I was unable to solve in short time.

38



Figure 8: Impulse Response Functions Following 0.1 sd R&D Shock (χ1) + Spillovers
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Figure 9: Impulse Response Functions Following 0.1 sd Productivity Shock (θ1)
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6 Calibration and Evaluation Against SVAR
After having succesfully built and simulated the model, I end by calibrating the multi-sector
RBC and the full model for the US and comparing the results to that of the Structural Vector-
Autoregression (SVAR). As mentioned in the introduction, I resort to calibration because I ran into
presently insurmountable stochastic singularity or under-identification problems doing Bayesian es-
timation with the data currently at my disposal10.

I will start this exercise by calibrating the models to the US economy divided into 3-sectors:
Agriculture (AGR), industry (IND) and services (SER). I will also start calibrating the multi-sector
RBC model to gain a benchmark against which the calibration of the full model can be evaluated.

6.1 US 3-Sector RBC vs. SVAR
Starting off with the basic 3-Sector RBC, I calibrate consumption (ωi) and labor (ςi) shares us-
ing the 10-Sector data provided by the Groningen Growth and Development Centre (GGDC)
(M. Timmer et al., 2015), which I aggregate to 3-sectors and take the average sectoral shares over
the period 1950-2012. The column-normalized input-output (IO) matrix is obtained by aggregat-
ing the World-Input-Output Database by M. P. Timmer et al. (2015) to 3-sectors and considering
only the US domestic IO matrix, averaged over the available years 2000-2014.

Table 7: US Matrix of Input Shares (Columns), 2000-2014 Average

AGR IND SER

AGR 0.242 0.019 0.009
IND 0.714 0.599 0.198
SER 0.043 0.383 0.793

Regarding the elasticities in the model, Herrendorf et al. (2013) estimate ε for the US 3-sector
economy by considering long-run changes in broad sectors relative prices and final consumption
expenditure shares, and come up with a benchmark estimate of 0.9. An extensive literature has
estimated the Frisch labor supply elasticity and come up with values between 0.5 and 3, so I will
keep ϕ = 1.5 (Chetty et al., 2011). I will also keep the stylized values of σ = 2, β = 0.985
and δ = 0.025, which are broadly in line with the values estimated in the literature. Atalay
(2017) estimates the elasticities of substitution among intermediate inputs ηi for 30 US sectors,
and consistently finds values less than 0.2. Since Inputs from 3 broad sectors should be less
substitutable than in a 30-sector setup, I will set all ηi to 0.1. Lastly, there is the elasticity of
substitution ν among sectoral labor stocks. Horvath (2000) estimates an elasticity of 1 here.

Table 8: USA 3-Sector Parameterization

Parameter Value Parameter Value

σ 2 ϕ 1.5
β 0.985 δ 0.025
ε 0.9 ν 1
ωAGR 0.03 ςAGR 0.03
ωIND 0.28 ςIND 0.25
ωSER 0.69 ςSER 0.71
αAGR 0.3 βAGR 0.3
αIND 0.18 βIND 0.2
αSER 0.08 βSER 0.66
ηAGR 0.1 ρAGR 0.95
ηIND 0.1 ρIND 0.95
ηSER 0.1 ρSER 0.95

10The stochastic singularity problems I encountered were not cause by some perfect linear relationship of observed
variables in my equations - I have tried introducing additional shocks and measurement errors to prevent that - but,
it seems, by the very nature of the model and the data.
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With these parameters in place, I simulate a log-linear 1st-order approximation of the model
over 100,000 periods, with equal-sized idiosyncratic shocks of standard deviation 0.1 to all sectors.
The autocorrelations of and shock decompositions of Value-Added (VA) are shown in Table (9).
The table shows that the presistence of the simulated series is roughly similar to that of the actual
ones, taken from the GGDC.

Table 9: USA 3-Sector Autocorrelation Functions of Simulated and Observed Variables

Variable 1 2 3 4 5

ysimulAGR 0.9311 0.8673 0.8078 0.7518 0.6994
ysimulIND 0.9435 0.8904 0.8401 0.7926 0.7477
ysimulSER 0.9468 0.8966 0.8488 0.8032 0.7597

yobsAGR 0.930 0.888 0.832 0.776 0.730
yobsIND 0.955 0.913 0.861 0.806 0.751
yobsSER 0.934 0.883 0.827 0.769 0.714

Table (10) below shows the simulated variance decomposition. It shows that agricultural pro-
ductivity shocks only impact agriculture, while agriculture itself is equally impacted by shocks to
Industry and to a lesser extent service sector shocks. Industrial output therewhile is driven to 92%
by itself, and the service sector is driven to 68% by itself, while also responding with a 30% share
to industrial shocks.

Table 10: USA 3-Sector Variance Decomposition Simulating one Shock at a Time (in %)

Variable eAGR eIND eSER Total

yAGR 37.65 37.05 24.79 99.49
yIND 0.03 92.43 6.95 99.41
ySER 0.53 30.60 67.69 98.82

This result from the model can be compared to the results of a Structural VAR (SVAR) esti-
mated on the 3-sector VA data in log-levels. Diagnostic criteria such as the Schwartz-BIC suggest
that in a VAR including a time-trend and a constant, 1 lag is enough to give serially uncorrelated
errors. I also run the SVAR in growth rates, but the results are so similar that I only report the
log-level SVAR. The SVAR is of the form

Ayt = C(1)yt−1 + Bεt, (192)

where B = I3 is assumed diagonal, and the contemporaneous impact matrix A is replaced by the
IO matrix shown in Table (7) but this time row-normalized (i.e. output shares are taken as more
closely associated with the impact coefficients than input shares) and with 1’s along the diagonal.
The Forecast Error Variance Decomposition (FEVD) from this SVAR is shown in Figure (10). The
FEVD after 10-periods is very closely in line with Table (10) except for agriculture, where services
make up 55% of the variance and industry only 15% instead of 37% industry and 15% services as
suggested by Table (10).
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Figure 10: Forecast Error Variance Decomposition from SVAR
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A final point of comparison are the Impulse-Response Functions (IRF’s) from the model and
the SVAR, shown in Figure (11). I note that both are on different time-scales (the SVAR has
10-period IRF’s whereas the model reports 100-periods), and the shocks have different magnitudes
(in the model the shock magnitude is 0.1 sd compared to 1 sd in the SVAR). Apart from these
differences, the IRF’s for industry and services are broadly similar (except for the response of
SVAR: SER to IND which is non-stationary, but this effect disappears if the SVAR is run using
growth rates of output instead of log-levels with trend, i.e. with growth rates the responses of
SVAR: SER look very much like the responses of Model: SER). For agriculture however the IRF’s
differ between the model and the SVAR: In the model, agriculture responds positively to industry
and negatively to services while in the SVAR this pattern is reversed. This pattern is the same
whether the SVAR is run in log-levels + trend or in growth rates.

Figure 11: Impulse Response Function, Model vs. SVAR
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Overall one can however conclude that the calibrated multi-sector RBC model already does a
decent job in accounting for US broad-sectoral persistence and co-movement.
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6.2 US 3-Sector RBC with Endogenous Technology
I proceed by calibrating the full model to the 3-sector US set-up. Apart from the parameters
in the RBC, in the full model labor needs to be divided between skilled labor for R&D and
adoption and unskilled labor. The World Bank Development indicators report that on average
3.8% of the American population work in R&D. Since the labor force only makes up around 60%
of the population, and there is also labor devoted to technology adoption about which there is no
information, I will assume that 2% of the US labor force is in R&D and adoption, thus ςu = 0.98
and ςs = 0.02. Unskilled labor is again divided over the three sectors using the same shares
as in the RBC. Skilled labor must also be divided over the tree sectors, and here there is also
unfortunately little information available11. It is clear that with the little share of agriculture in
overall employment there is also little skilled labor devoted to R&D and adoption in agriculture.
But since Agriculture in the US is very technology intensive, I will assume that the same share
of 3% in skilled labor as in unskilled labor goes to Agriculture. For industry and services the
weights however need to be changed, as most R&D is in industry, and I also expect the industry
to be quicker in adopting new technologies. I will assume that 20% of the skilled labor is in
services, and the remaining 77% in industry. For unskilled labor, I will assume the same elasticity
of substitution νu = 1 as in the RBC. Skilled labor however is much less substitutable, because
it is more specialized. Therefore I set νs = 0.1. For the labor share in adoption, Anzoategui et
al. (2017) estimate an adoption elasticity of ρa = 0.927 for the entire US economy. I will set the
same adoption elasticity in all sectors because not much is known about their technology adoption
behavior. The same holds for R&D, Anzoategui et al. (2017) estimate ρz = 0.376 for the elasticity
of new technologies w.r.t. R&D, which I also apply to all 3 sectors. Initially I will disable spillovers,
i.e. ρMai = ρMri = 0 ∀ i. Table (11) shows the autocorrelated functions of the simulated series. I
include skilled and unskilled labor in the simulations because the IRF’s show interesting patterns
which I will discuss below. The simulated output series in Table (11) are a bit more persistent
than the actual series shown in Table (9). The same holds true for the observed employment series
(not reported), where the autocorrelation at lag 5 is typically down to 0.6.

Table 11: Autocorrelation Functions of Simulated Variables - Full Model

Variable 1 2 3 4 5

yAGR 0.955 0.912 0.870 0.831 0.793
yIND 0.962 0.926 0.891 0.857 0.824
ySER 0.957 0.916 0.876 0.838 0.802
luAGR 0.959 0.919 0.881 0.845 0.810
luIND 0.956 0.914 0.872 0.833 0.795
luSER 0.980 0.960 0.942 0.924 0.907
lsAGR 0.951 0.904 0.858 0.815 0.773
lsIND 0.946 0.894 0.845 0.798 0.753
lsSER 0.944 0.891 0.840 0.792 0.746

Table (12) shows the variance decomposition from all shocks. It shows that the R&D shocks in
industry and services make up must of the variance, which indicates that a R&D shock of 0.1 sd is
probably too large. So I reduce The shock magnitude of the R&D shock to 0.01 sd, and report the
variance decomposition again in Table (13). Table (13) suggests that 70% of the variance in US
output, skilled and unskilled labor is accounted for by R&D and productivity shocks in industry,
and by skilled labor supply shocks. But again of course I have not estimated the variances of
these shocks, so Tables (12) and Table (13) can at best give hints about the relative importance of
different shocks - under the assumptions that the model is correctly specified and parameterized.

11The OECD publishes sectoral R&D statistics, but the sectors to not correspond or can easily be mapped to the
three broad sectors considered here
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Table 12: Variance Decomposition Simulating one Shock at a Time (in %) following 0.1 sd shocks
- Full Model

Variable eµu eµs eθAGR eθIND eθSER eχAGR eχIND eχSER Total

yAGR 0.11 0.73 0.19 0.60 0.01 0.03 67.90 27.27 96.85
yIND 0.11 0.72 0.19 0.63 0.01 0.03 67.63 27.31 96.65
ySER 0.11 0.71 0.18 0.61 0.02 0.03 67.56 27.34 96.56
luAGR 0.11 0.73 0.19 0.61 0.01 0.03 67.74 27.30 96.72
luIND 0.11 0.73 0.19 0.61 0.01 0.03 67.90 27.27 96.86
luSER 0.10 0.66 0.17 0.64 0.01 0.03 66.53 27.50 95.66
lsAGR 0.11 0.72 0.19 0.59 0.01 0.03 68.00 27.26 96.92
lsIND 0.11 0.71 0.19 0.61 0.01 0.03 68.07 27.23 96.95
lsSER 0.11 0.70 0.19 0.61 0.02 0.03 68.07 27.23 96.94

Table 13: Variance Decomposition Simulating one Shock at a Time (in %) following 0.1 sd shocks
to µ and θ and 0.01 sd shocks to χ - Full Model

Variable eµu eµs eθAGR eθIND eθSER eχAGR eχIND eχSER Total

yAGR 4.08 26.82 6.96 21.96 0.41 0.01 24.87 9.99 95.11
yIND 4.09 26.11 6.77 22.84 0.42 0.01 24.43 9.86 94.54
ySER 3.89 25.93 6.74 22.32 0.77 0.01 24.80 10.04 94.49
luAGR 4.04 26.47 6.88 22.27 0.38 0.01 24.69 9.95 94.70
luIND 4.12 26.72 6.93 22.23 0.47 0.01 24.76 9.95 95.19
luSER 3.67 24.03 6.25 23.38 0.37 0.01 24.18 9.99 91.88
lsAGR 4.07 26.74 6.91 21.98 0.46 0.01 25.13 10.07 95.39
lsIND 4.01 26.25 7.00 22.46 0.54 0.01 25.23 10.09 95.58
lsSER 3.99 26.00 6.99 22.54 0.56 0.01 25.35 10.14 95.58

In Figure (12) I show the IRF’s from passing 0.1 sd shocks to all exogenous variables12. As
is evident from the figure, the shocks differ in terms of magnitude and duration of the effect
they produce. Productivity shocks (θi) have a large immediate impact, but only last for 50-80
periods, while R&D shocks (χi) have no immediate impact, develop their maximum impact after
100 periods, and last for more than 400 periods i.e. they have permanent growth effects. Shocks to
the aggregate skilled and unskilled labor stocks (µu and µs) are in-between R&D and productivity
shocks in terms of both magnitude and duration, with skilled labor supply shocks having more
permanent effects than unskilled labor supply shocks.

12Note that Figure (12) is different from Figure (11) in that the shocks now make up the panels and the response
variables are coloured. This was done because the effects of different shocks are different in magnitudes.
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Figure 12: Impulse Response Functions to 0.1 sd Shocks (×100) - Full Model
(IRF’s from 1st order log-linear approximation, model simulated over 100,000 periods)
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Regarding the direction of shock impacts, productivity shocks are broadly in line with R&D
shocks. Agricultural productivity of R&D shocks increase agricultural output and services output,
but decrease industrial output. This is broadly in-line with the SVAR. Industrial shocks increase
industrial and agricultural output, but slightly decrease output in services. This is congruent to the
RBC model but not to the SVAR, where industrial shocks also decrease agricultural output. Service
sector shocks therewhile increase services and industrial output, but decrease agricultural output.
This is not in-line with the RBC and SVAR results where service-sector shocks decrease industrial
output. Concerning labor, skilled labor stocks in all sectors always co-move. Industry and service
sector shocks increase the skilled labor stocks, but agricultural shocks decrease it. The response of
unkilled labor is more heterogenous as stocks initially tend to co-move with outputs, while later
the response might reverse. The model thus suggests that R&D shocks can have structural change
effects, although the direction and magnitude of the change is not always reasonabl.

6.3 US 10-Sector RBC vs. SVAR
In subsection 6.1, I established that the multi-sector RBC model did not fare too bad in accounting
for the impulse responses and variance decompositions of the three sectors, assuming of course that
the SVAR is correctly identified. Now I want to take the model-evaluation a step further with the
full 10-sector GGDC data of the US economy. The data is summarized in Figure (13). It shows only
a slight pattern of structural change driven by a decline in agriculture, mining and manufacturing
and an expansion of finance and the government. The dendrogram below shows the correlation
structure of the 10 series - agriculture and mining and utilities and government co-move, and the
remaining sectors also co-move with one-another: Manufacturing, trade and transport are closely
correlated and community services, construction and finance covary to a lesser degree.

46



Figure 13: GGDC Data, United States 1950-2012
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The corresponding 10-sector IO matrix is computed by aggregating the WIOD of M. P. Timmer
et al. (2015) and shown (with normalized columns) in Table (14). It is only available for the years
2000-2014, and the average change in input-shares over this period is 0.025, with an average
autocorrelation of 0.7 and and average time-correlation of 0.6. This gives hope that changes in the
IO matrix at the 10-sector-level, on which the identification of the SVAR depends, are driven by
the slow pattern of structural change observed in the data, and might not have completely changed
since 1950.
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Table 14: USA 2014 Column-Normalized Input-Output (IO) Matrix

AGR MIN MAN PU CON WRT TRA FIRE GOV OTH
AGR 0.370 0.001 0.078 0 0.003 0.006 0 0.001 0.001 0.002
MIN 0.008 0.211 0.105 0.173 0.017 0.001 0.005 0.002 0.008 0.003
MAN 0.299 0.237 0.469 0.218 0.475 0.162 0.246 0.071 0.226 0.171
PU 0.016 0.030 0.021 0.063 0.008 0.018 0.017 0.024 0.031 0.038
CON 0.011 0.031 0.005 0.029 0 0.005 0.008 0.038 0.035 0.011
WRT 0.112 0.059 0.101 0.077 0.279 0.100 0.082 0.065 0.083 0.087
TRA 0.058 0.082 0.051 0.130 0.052 0.120 0.244 0.058 0.065 0.055
FIRE 0.104 0.328 0.152 0.265 0.146 0.520 0.334 0.685 0.461 0.520
GOV 0.017 0.019 0.014 0.034 0.012 0.047 0.038 0.035 0.066 0.046
OTH 0.004 0.004 0.004 0.012 0.008 0.021 0.026 0.022 0.023 0.067

.

I parameterize the model with the average value added (ωi) and employment (ςi) shares, and
the column-normalized IO matrix (γji). All other parameters are as in the 3-sector set-up. Now by
virtue of the larger disaggregation, providing an IO matrix with more zero or near-zero entries, a
more sophisticated identification strategy can be followed for the SVAR. Again I will only run the
VAR with log value added (VA) data since adding employment would make identification much
more difficult and there are also only 60 years of joint data to estimate on. With 64 years of VA
data and 10 variables, I experiment with lag lengths 1-4, including a constant and a linear trend
in each equation. Among the information criteria, the Schwartz BIC suggest 1 as the optimal lag
length, while AIC, FPE and HQIC suggest 4 as the optimal lag length. Diagnostic tests show
that a VAR with one lag already produces serially incorrelated errors, jointly and on every series.
Therefore to preserve degrees of freedom I adopt a VAR with one lag as my preferred specification,
but I also report a VAR in growth rates of VA where all information criteria suggest an optimal
lag-length of 1. The structural model again is:

Ayt = C(1)yt−1 + Bεt. (193)

To reach identification I assume that B is a 10×10 identity matrix. This means that 10(10−1)/2 =
45 restrictions need to be imposed on A. Since A captures the contemporaneous relationships
between sectoral VA, I will impose restrictions on A by placing a number of zeros informed by
the input-output matrix. Now a problem is that the IO matrix represents a dynamic system of
production in which the rows describe the product-sale destinations (outputs) and the columns
describe the gross value-added expenses (inputs) for each sector, while the matrix A contains in
each row the contemporaneous impact coefficients of a shock to all other sectors on that sector.
In the IO matrix this shock can come from two different directions, it could be a product-sale
(demand) shock or an expenditure (supply) shock. To be able to place appropriate zeros, I take
both channels into account by creating a potential impact matrix A∗, computed as the output
shares (normalized rows), to which I add the corresponding input shares (normalized columns), so
that in each row i of A∗, each entry j corresponds to the sum of the input and output shares of
sector (column) j in sector (row) i’s production13.

A∗ =

AGR MIN MAN PU CON WRT TRA FIRE GOV OTH
AGR 1 0.008 0.905 0.014 0.013 0.124 0.053 0.099 0.022 0.005
MIN 0.005 1 0.900 0.080 0.041 0.050 0.076 0.282 0.047 0.005
MAN 0.084 0.097 1 0.026 0.063 0.146 0.095 0.186 0.132 0.017
PU 0.013 0.164 0.414 1 0.037 0.153 0.156 0.481 0.229 0.046
CON 0.014 0.037 0.478 0.026 1 0.271 0.072 0.644 0.306 0.020
WRT 0.029 0.009 0.429 0.027 0.110 1 0.168 0.669 0.179 0.041
TRA 0.014 0.018 0.385 0.035 0.030 0.240 1 0.483 0.157 0.039
FIRE 0.005 0.013 0.162 0.031 0.049 0.206 0.106 1 0.206 0.050
GOV 0.011 0.015 0.316 0.040 0.045 0.233 0.130 0.683 1 0.052
OTH 0.006 0.006 0.228 0.044 0.028 0.230 0.150 0.822 0.260 1

.

(194)
A is then obtained from A∗ by assuming that all coefficients in A∗ smaller than 0.044 are 0, i.e.
sectors j whose overall input-and output interaction with sector i amounts to less than 5% of sector

13The input and outpute shares added in A∗ take into account the rest of the World, that is they do not sum to
1.
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i’s VA are assumed to have a negligible direct impact on sector i’s production. This assumption,
together with the 1’s along the diagonal, gives exactly the 45 restrictions necessary:

A =

AGR MIN MAN PU CON WRT TRA FIRE GOV OTH
AGR 1 0 X 0 0 X X X 0 0
MIN 0 1 X X 0 X X X X 0
MAN X X 1 0 X X X X X 0
PU 0 X X 1 0 X X X X X
CON 0 0 X 0 1 X X X X 0
WRT 0 0 X 0 X 1 X X X 0
TRA 0 0 X 0 0 X 1 X X 0
FIRE 0 0 X 0 X X X 1 X X
GOV 0 0 X 0 X X X X 1 X
OTH 0 0 X 0 0 X X X X 1

.

(195)
The estimated impact matrix is:

Â =

AGR MIN MAN PU CON WRT TRA FIRE GOV OTH
AGR 1 0 0.089 0 0 0.106 0.106 0.106 0 0
MIN 0 1 0.094 0.100 0 0.106 0.106 0.111 0.106 0
MAN 0.109 0.099 1 0 0.097 0.097 0.100 0.100 0.102 0
PU 0 0.098 0.106 1 0 0.107 0.098 0.106 0.107 0.107
CON 0 0 0.101 0 1 0.097 0.109 0.096 0.096 0
WRT 0 0 0.101 0 0.097 1 0.096 0.100 0.101 0
TRA 0 0 0.102 0 0 0.098 1 0.085 0.101 0
FIRE 0 0 0.098 0 0.098 0.098 0.096 1 0.101 0.098
GOV 0 0 0.099 0 0.100 0.099 0.084 0.101 1 0.099
OTH 0 0 0.101 0 0 0.105 0.107 0.079 0.099 1

.

(196)
The estimated coefficients look surprizingly homogeneous, but it turns out that plugging in the
row-normalized IO matrix instead of Â only slightly changes the IRF’s and FEVD’s in the first
two periods (the 0’s are key for identification). A problem with just using the IO matrix as in
the 3-sector set-up would be that it is ad-hoc and does not take into account demand elasticities
and elasticities of substitution between different productive inputs, which the estimation should
uncover. Therefore I only report the results with Â, noting that the results with the IO matrix
(i.e. full calibration) are quite similar. Starting the comparison again with the autocorrelations or
simulated and observed variables, Figure (15) shows that the model is able to generate series of
about the same persistence as the log-levels of the data.

Table 15: Autocorrelation Functions of Simulated and Observed Variables

Lag AGR MIN MAN PU CON WRT TRA FIRE GOV OTH

M 1 0.96 0.95 0.96 0.97 0.95 0.96 0.96 0.96 0.96 0.96
O 2 0.92 0.90 0.92 0.94 0.90 0.92 0.92 0.93 0.92 0.92
D 3 0.88 0.86 0.89 0.91 0.86 0.89 0.89 0.89 0.88 0.88
E 4 0.84 0.82 0.85 0.88 0.82 0.85 0.85 0.86 0.84 0.85
L 5 0.81 0.78 0.82 0.85 0.78 0.82 0.82 0.83 0.80 0.81

D 1 0.96 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
A 2 0.92 0.90 0.92 0.91 0.91 0.93 0.92 0.91 0.92 0.92
T 3 0.88 0.85 0.87 0.87 0.87 0.88 0.88 0.87 0.87 0.88
A 4 0.84 0.79 0.83 0.83 0.82 0.84 0.84 0.83 0.83 0.84

5 0.80 0.74 0.79 0.79 0.77 0.80 0.80 0.78 0.78 0.80

With the 10-sector model I have also compared the correlations of simulated and observed
variables, although this is not straightforward since the log-levels of the data are very highly
correlated due to the common trend, while the stationary series generated by the model are less
correlated. I have therefore done the comparison with the correlation matrix of the growth rates of
the observed series and also with the correlation matrix of the HP-filtered log-levels of the observed
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series. A summary statistic for the similarity of empirical and simulated correlations was generated
by transforming all 3 correlation matrices (from the model, growth rates and HP-cycles of the data)
into vectors (omitting the diagonal) and computed the correlation between these vectors i.e. the
correlation between the correlation coefficients coming from the model and the data. The result is
shown in Table (16).

Table 16: Correlation of Correlations of Simulated and Observed Variables

Model Growth HP-Cycle

Model 1 0.080 0.138
Growth 0.080 1 0.786
HP-Cycle 0.138 0.786 1

It is evident from Table (16) that the model is able to generate a small part of the correlations
between the variables, but by no means all of the joint variation. This result is confirmed by
comparing the IRF’s from the model with those of the SVAR and of the SVAR in first-differences
(i.e. growth rates since the data are in log-levels) shown in Figure (14).

Figure 14: IRF’s from 10-Sector SVAR’s (1 lag) in VA vs. Model
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Figure (14) is hardly readable but shows that the IRF’s coming from the model are quite dif-
ferent than the IRF’s coming from the SVAR’s. Again I summarize this comparison by calculating
the cumulative impacts from each of the IRF’s and correlating them, overall and by sector. Table
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(17) shows the results of this exercise. In overall terms, there is no sizeable correlation between
the cumulative impact multipliers coming from the model and from the two SVARS. The mul-
tipliers from the two SVAR’s (SVARs) are also not positively correlated. This suggests that all
the IRF’s from the SVAR’s are spurious or ill-identified. Disaggregating the impact multipliers
by response-sector however shows some alignment of the model and the SVAR in FD among the
responses of a number of sectors (FIRE, GOV, MAN, MIN, OTH and PU) to the different shocks.
Disaggregating by shock-sector does not yield any alignment between the model and any of the
the SVAR’s, but the two SVAR’s do produce similar responses to the same shocks.

Table 17: Correlation of Cumulative Shock Impacts from Model with SVAR’s

Overall SVAR : −0.06 SVAR in FD: 0.05 SVARs: −0.10

By Shock By Response

SVAR SVAR in FD SVARs SVAR SVAR in FD SVARs

AGR 0.02 -0.29 0.70 -0.70 0.02 0.23
CON 0.22 0.81 0.28 -0.47 -0.001 -0.35
FIRE -0.15 -0.33 0.67 -0.69 0.56 -0.07
GOV -0.24 -0.57 0.52 -0.68 0.62 -0.44
MAN -0.02 -0.002 -0.12 -0.18 0.40 0.46
MIN 0.13 -0.03 0.67 -0.48 0.64 0.05
OTH -0.07 0.30 0.44 -0.79 0.60 -0.34
PU -0.07 -0.03 0.75 -0.41 0.49 -0.85
TRA 0.22 0.40 -0.33 -0.55 -0.15 -0.34
WRT -0.22 0.11 0.75 0.63 -0.26 −0.16

Within -0.08 0.02 0.34 -0.06 0.05 −0.10

Up to this point it may be concluded that in a 10-sector setup the model is able to produce
sectoral VA series that are similarly persistent as the observed series, but not much of the correlation
structure between the variables. Before accepting the latter I will however also compare the
variance decompositions, shown in Figure (15)14. Here the two SVAR’s are much more aligned
with one-another than in the IRF’s, and also the model variance decomposition seems to have
some similarity with that of the SVAR’s - particularly for construction, government and other
services. A curiosity is the large shares of finance and government in the variance decomposition
of the model, which is much smaller in the SVAR’s. Again I will break down the similarity of these
variance decompositions to a number by correlating the shares. For the variance decompositions
coming from the SVAR’s, I consider both the average of the shares over the 10-periods, and the
shares in the final (10th) period. The result is presented in Table (18), and indicates that there
is some sizeable correlation between the variance shares of the different sectors coming from the
model and the SVAR’s, particularly the SVAR in log-levels. With a correlation of 0.7, the average
FEVD’s coming from the two SVAR’s are also much more closely aligned.

Table 18: Correlation of Variance Decomposition Shares from Model and SVAR’s

Model SVAR avg. SVAR final. SVAR in FD avg. SVAR in FD final

Model 1 0.47 0.45 0.14 0.15
SVAR avg. 0.47 1 0.75 0.70 0.70
SVAR final 0.45 0.75 1 0.22 0.27

SVAR in FD avg. 0.14 0.70 0.22 1 0.99
SVAR in FD final 0.15 0.70 0.27 0.99 1

14To ease interpretation I have created a figure instead of a table from the variance decomposition of the model.
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Figure 15: 10-Sector SVAR (1 lag) in VA, United States 1950-2012
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This lets me conclude this exercise by suggesting that even if the multi-sector RBC model
does not preform very well in this case, there is scope for improvement in matching the data via
better calibration, i.e. by estimating also elasticities of substitution between the different inputs
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for all sectors, or via successful Bayesian estimation on better (monthly or quarterly) data. An
important caveat in this evaluation was that the SVAR’s did not seem well identified - as evidenced
by the more-or-less spurious IRF’s. The strong interdependence of productive sectors in the US,
the dominance of some sectors such as finance as suppliers of inputs, and the different volatilities of
the sectoral VA series evident from Figure (13) could all have contributed to identification problems
in the SVAR.

7 Summary & Conclusion
I began this dissertation by reviewing facts about the business cycle and longer-term fluctuations in
US economic activity, brought to light be two very relevant but so far distinct literatures in macroe-
conomics. The literature in sectoral shocks and aggregate fluctuations, starting with J. B. Long &
Plosser (1983), has provided convincing evidence that up to 80% of US aggregate business-cycle
fluctuations in output and productivity are generated by sectoral shocks cascading through the
input-output network. The structure of the productive network is key in moderating the amplifi-
cation of idiosyncratic sectoral shocks. Aggregate technology shocks, as found in many one-sector
DSGE models, represent a significant abstraction with little resonance in the data. Meanwhile the
literature on medium-run fluctuations and endogenous technological change, birthed with Comin
& Gertler (2006), has challenged classical ways of viewing and modelling the business cycle and
pointed out the more intricate and longer-lived nature of economic fluctuations. This literature has
introduced the concept of the medium-run cycle comprising of all economic fluctuations above 200
quarters in period, and shown that this cycle can succesfully be accounted for - at least in the US
- by DSGE models including endogenous mechanisms involving decentralized decisions to invest in
R&D and technology adoption. The literature has further established that these investment and
adoption decisions are taken pro-cyclically with the classical business cycle.

Against the backdrop of these recent developments in business-cycle macroeconomics, I moti-
vated my project by suggesting the construction of a model that would be able to account for these
extended fluctuations in output and productvity on the basis of decentralized sectoral decisions
to invent and adopt new technologies, and sectoral interactions. I proceeded to construct such a
model featuring endogenous R&D and technology adoption decisions in a multi-sector RBC econ-
omy, and introduced three levels of plausible interaction into it: (1) linkages in intermediate inputs,
allowing for sectoral economic shocks to transmit through the input-output network influencing
R&D and technology adoption decisions in other sectors, (2) spillovers in technology adoption,
resulting from competitive pressures triggered by technology adoption by upstream or downstream
sectors in the value chain, and (3) R&D spillovers, resulting from technological breakthroughs and
increased R&D in either upstream or downstream sectors of the value chain. In the construction of
the model I started off in section 3 with the simplest possible RBC model featuring heterogenous
wages and prices and full interactions in intermediate productive inputs. A stylized calibration and
simulation of this model showed that it is capable of delivering the expected dynamics in terms
of relative wages, prices, consumption and intermediate inputs supplied following an indiosyn-
chratic sectoral shock. Then, in section 4 I built the simplest possible RBC model encompassing
the full endogenous R&D and technology adoption mechanism initially introduced by Comin &
Gertler (2006) and enhanced in Anzoategui et al. (2017). A stylized calibration and simulation of
this model showed that shocks to R&D and skilled labor supply have little immediate impact on
the economy but produce extended increases in output, consumption, productivity, invented and
adopted technology with gains from variety for the consumer, but also extended periods of higher
unemployment. The impact of these shocks thus resembles a period of skill-biased technological
change, which slowly phases-in and dies out even more slowly - just the behavior required to explain
the long-waves in US output (coined the ’medium-term component’ by Comin & Gertler (2006)).

Having built and analyzed separately the two key components of the model, I integrated in
section 5 the two parts, yielding a complex multi-sector RBC economy with intermediate inputs
in production, independent endogenous R&D and adoption decisions in each sector, and sectoral
spillovers of R&D and technology adoption transmitted through the value chain. There remain
some unsolved problems with this model, especially in terms of stability and dealing with non-
stationarity, but a stylized calibration and simulation of the model showed that it in principle
works in the intended way: sectoral R&D shocks transmit through the input-output network, in-
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crease sectoral outputs and trigger sectoral reallocations of productive investment, but also bring
economic benefits to consumers in all sectors. Allowing for R&D and adoption spillovers magnifies
the diffusion of technology, the increase in output, and the persistence of the shock, and generates
additional benefits for consumers, but also additional unemployment. The simulation, however,
also showed some additional caveats of the model in its current form, most notably in a friction-
less set-up, R&D shocks to one sector produce such large reallocations and decline in capital and
investment in that sector that the sector not experiencing the R&D shock actually reaps more of
the economic benefits (in terms of investment and profits).

After bringing the model into existence and studying its basic properties via stylized calibration
and simulation, it was my intention to perform a Bayesian estimation of the model on annual US
10-sectoral data in VA and employment since 1950, provided by (M. Timmer et al., 2015). Such
an estimation and auxiliary procedures such as DSGE-VAR would have allowed me to evaluate
the overall fit of the model to the US data and provided me with estimates of some parameters
of the model that have not yet been estimated in the literature and that are very difficult to cal-
ibrate (particularly the parameters relating to sectoral R&D and technology adoption decisions
and sectoral technology spillovers). My efforts to estimate the model have unfortunately drowned
in insurmountable stochastic singularity problems, suggesting most likely the use of more detailed
monthly or quarterly data and possibly some changes to the model structure as the way forward.
In order to still present some sort of empirical exercise, I crudely calibrated the RBC and the
full model to 3 US sectors - agriculture, industry and services, and the RBC also for 10-sectors,
and compared the results with those from SVAR’s estimated on the VA data of M. Timmer et al.
(2015). The exercise comparing the RBC and the SVAR suggested that in a simple 3-sector set-up
the simple calibrated RBC is roughly able to account for broad patterns of sectoral persistence and
co-movement. In the 10-sector set-up the RBC is able to generate sectoral persistence but only
little sectoral co-movement. However these results may also stongly be called into question by the
evident idenification issues with the SVAR. The full model calibrated for 3 US sectors produced
VA series that were a bit more persistent than the actual series, and showed that sectoral R&D
shocks trigger extended increases in VA in broad US sector with a co-movement of skilled and
unskilled labor. The IRF’s were broadly in agreement with the response patterns in the simulation
exercise of section 5, and, due to the persistence of the effect, additionally suggest that this model
could also be interesting for understanding patterns of structural change.

If the efforts presented in this dissertation have established anything at this point, then I hope
it is that they have provided some evidence for the relevance and potential of a disaggregated
equilibrium model of production featuring endogenous R&D and technology adoption decisions
- however inadequate it may be at this point - to account for broad patterns of extended real
fluctuations at the aggregate and sectoral levels, at least in advanced economies similar to the US.
There are many ways in which this line of research and the model constructed in this dissertation
can be enhanced / extended. A first step would certainly be to get a Bayesian estimation of
the model running on better - monthly or quarterly - sectoral data, and obtain estimates of the
overall fir of the model to the data, and the importance of the various endogenous R&D and
spillover channels - informed by the parameter estimates and standard errors. Afterwards, a next
step would be to research how the fit of the model to the data can be improved. This could be
achieved for example by means of introducing a limited number of frictions, such as investment
adjustment costs, in key places, which might be capable of dramatically improving the models fit
to the data. Potentially even the endogenous technology mechanism and the specification of the
model itself may be adapted. The process of improving the model and its fit to the data could
be informed by several steps. The first would be a detailed empirical investigation of sectoral
data on VA, R&D and productivity which might stipulate alterations to the models specification.
Second, the literature on multi-sector DSGE models and endogenous technology models may be
studied more closely w.r.t. the details of estimation. The model of (Anzoategui et al., 2017) for
example, which fits the aggregate US data remarkably well, incorporates many frictions (sticky
wages, prices, investment adjustment costs and a few others). It would be useful to find out
which of the frictions in Anzoategui et al. (2017) most improves the fit of their model and to
consider implementing it in this model. Regarding the estimation of multi-sector DSGE model
there are also many further references to consult, for example the guide by Dixon & Kara (2012).
When the optimal specification of the model is found, the properties of the model in terms of
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accounting for aggregate and sectoral output patterns and patterns of structural change could also
be investigated. Possibly the model specification could even be altered to allow for an alternative
mechanism generating structural change as shown in Herrendorf et al. (2014), that is separate from
R&D and technology decisions. Incorporating such a mechanism accounting for classical demand-
and supply side factors driving structural change could dramatically improve the fit of the model
when estimated on sectoral data. Thus, there remain many points of further improvement of the
work presented here, and many new research avenues to be explored with this model.
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